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This thesis presents a method for building a full view cylindrical panorama from

uncalibrated photographs taken naturally with an ordinary hand-held camera held

at an approximately fixed location.

Such photographs usually have large perspective distortions, a small amount of
overlap, possible brightness differences, and unintended camera rotations(tilt and
roll). These characteristics make both image registration and panorama building
more difficult than when using photographs taken by cameras calibrated by special

equipment.

We show how these images can be registered by a feature matching scheme.
The features used are based on local edge gradient intensities and shape match-
ing. Preprocessing is used to quickly reject impossible matches. When feature

correspondence is inadequate by itself, we further invoke an optical flow based fine

registration process to improve the registration.



We show how to composite these photographs into a panorama with perspective
transformations between adjacent images; these perspective transformations are
determined by minimizing errors between corresponding features from adjacent
images, using a linear method. Further corrections are then made to the panorama,
to allow for the fact that a local pairwise image registration method is used, rather

than a global solution.

Experiments show that our method yields visually satisfactory results from real

photographs taken with modest care to ensure a reasonable amount of overlap.
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Chapter 1

Introduction

Constructing a complete panorama of a 3D scene from a sequence of partially
overlapping photographs is one of the fundamental modeling tasks in building an
image-based virtual reality system (IBVR), and also has other applications for
visualization. In recent years, image-based virtual reality systems have been a
focus of interest for both computer vision and computer graphics communities.
Compared with conventional 3D-model based VR systems, IBVR systems have
the advantage of photographic realism and rendering simplicity. The most popu-
lar IBVR systems are based on nodal panoramas [Chen93, Chen95, McMillan95,
Szeliski96, Kang98, Shum00], in which a full-view panorama is constructed from
several panorama nodes and in-between views are generated by interpolation of
these nodes. Others construct panoramas with a moving viewing center [Peleg00,
Rademacher98], or by dense sampling of the environment using light fields and
lumigraphs [Levo96, Gortlet96]. Being an effective tool to present a photo-realistic
virtual reality with moderate storage, nodal panorama images are very popular
on the World Wide Web and in multimedia applications. However, creating high

quality panoramas, especially those that form a closed shell, remains difficult.
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With the rapid growth of computational power of personal computers, it is
envisioned that the high demand for computer graphics and virtual reality appli-
cations, even by home computer users, will increase significantly. Thus, reliable
automatic construction of panoramas from a series of photographs taken with a

hand-held camera is a topic of interest.

In order to build a full-view panorama, first we need to acquire a set of images,
which can be done either with an ordinary camera or by using special equipment.
Since a single ordinary image can usually only capture a small portion of the en-
vironment, a sequence of overlapping images must be taken to cover it completely.
A common coordinate system for all images must be determined for stitching the
images together to composite a panorama. Determining the transformation be-
tween the local coordinate systems of two images is a crucial problem. Finally, the
panorama is mapped onto a surface model for users to view. We study two major
sub-problems in constructing a panorama: image alignment and panorama com-

position. A prototype of the system has been built using a Pentium III 500MHz

PC to validate the theoretical ideas presented here.

In this chapter, I first present the background of our research in Section 1.1,
and then give a detailed description of the problem in Section 1.2. In Sections 1.3,

I review relevant previous work. The contributions and an outline of the thesis are

given in Sections 1.4 and 1.5.

1.1 Background

A panorama is an image with a large field of view. Generally, in computer graphics
a panorama is taken to be a compact representation of some environment viewed

from either a single node or along a moving path, and the panorama captures either
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the whole or a part of the environment. For single node panoramas, there is usually
a full 360° field of view in a horizontal or a vertical direction, or in both. Previous
work such as [Chen95, Szeliski97, Shum00, Bao99, Xiong98] studies how to build
this kind of panorama. Moving path panoramas in the simplest case provide an
orthogonally viewed panoramic image of a large scene, as described by [Rousso97].
More generally, a manifold projection is performed: see [Pelegd7, Peleg00], for
example. The basic steps in building a panorama are image acquisition, image
alignment and panorama composition. In the rest of this section, we will briefly

examine these issues.

1.1.1 Image Acquisition

To build a panorama, we first need to acquire input images. Input images can be
obtained by different methods. Depending on the choice of method, the subsequent
processing of these images will be different. Images can be captured from a single
viewing center using two techniques, large view tmaging, using special equipment
and ordinary perspective imaging, using conventional cameras to take a series of
images in different viewing directions. Images captured from a moving viewing
center, but with fixed viewing direction, use methods of multiperspective imaging.
The problem studied in this thesis concerns ordinary perspective imaging, but we

first review each of these approaches.

Large View Imaging

Images with a large field of view can be directly recorded by special equipment, such
as panoramic cameras and omnidirectional cameras, methods referred to as large

view imaging. A panoramic camera can directly capture a cylindrical panoramic
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image by recording an image onto a long film-strip [Meehan90]. An omnidirectional
camera can capture a hemispherical field of view using mirrored pyramids and

parabolic mirrors [Nayar97, Onoe98].

Another type of camera which can capture a nearly hemispherical field of view
uses a fish eye lens camera[Xiong97]. This approach, however, requires a special
calibration algorithm to construct distortion-free perspective images of the viewed

scene.

Such cameras can typically capture an entire environment with just one, two
or four images. In the latter cases, the small number of images to be registered
can help to keep computational time low. However, the limited resolution of each
shot taken using wide-angle cameras compromises the panoramic image resolution.

Also, such special equipment is relatively expensive and is not generally available.

Ordinary Perspective Imaging

Images can also be captured using readily available equipment, such as ordinary
cameras, digital cameras and video cameras. We refer to the acquisition of im-
ages by such methods from a fixed viewpoint as ordinary perspective imaging, or
ordinary imaging for short. Images taken in such a way are related to each other
by perspective transforms. Ordinary imaging pictures usually have a smaller field
of view than our human view. To build a panoramic image with a larger field of
view, we need to take a sequence of adjacent or partially overlapped images, deter-
mine the transformations between neighboring images, and stitch all the images
together. We refer to such a set of images as an ¢mage mosaic. Finding the space
transforms between the images and stitching the images together is referred to as

image mosaicking [Irani96, Irani98a).

Simple image mosaics can be created by rotating the camera around its optical
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center using a special device, such as a turntable that provides accurately known
transtormations between the images [Chen95]. Alternatively, the images can be
obtained by a hand-held camera as long as they are captured from approximately
the same viewing position. In our research, we are aimed to simplify input image
acquisition, and to build a panorama from images taken with an uncalibrated

hand-held camera.

Multiperspective Imaging

Another type of image with a large field of view is captured by the multiper-
spective 1maging method, where image strips to be composited are used to record
images taken from a smoothly moving viewing center. One way to capture the
strips is to use a one-dimensional cameras—a strip camera [Ghosh88| or a push-
room camera [Hartley94] for scanning the environment. The other is to cut strips
from a sequence of two-dimensional images taken with a conventional camera
[Peleg97]. This sequence of strips can directly acquire orthographic maps with
translational motion, images along an arbitrary path, and multi-center-projection
images [Peleg97, Zheng92, Rademacher98, Wood97]. Methods for processing such
a, sequence of strips into a panorama can handle a wide variety of viewing motions

including motion towards the scene and optical zoom [Zheng99, Peleg00].

Such methods, however, suffer from several disadvantages. The fact that the
viewing center is moving means that, in the general case, some approximations
must be made—for example, that the depth differences in the scene are negligible.
Also the scene is not uniformly sampled when the viewing direction is not vertical
with the camera motion direction, leading to poor quality of the final panorama,

which is exacerbated by the multiple warpings required.
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1.1.2 Image Alignment

When using an ordinary hand-held camera, we need to stitch together overlapped
views of a scene to form a larger field of view. To be able to do this, the transforma-
tion between the photographs must be determined. This is usually done by finding
transformations between adjacent images. This is a problem of image alignment
or registration. Image registration can be done either manually or automatically.
Manual methods involve interactively translating and rotating the second image of
each pair into its correct relative position, or interactively identifying correspon-
dences in a pair of images and using them to compute a space transformation.
Automatic image registration has been studied for decades and is a central issue

of many research areas. We briefly review this subject in the following.

Overview

Image registration problems arise when images of the same scene are taken from
different viewpoints or viewing directions, possibly with different sensors, different
lighting conditions, and at different times. Some examples of the need for regis-
tration are: stitching satellite images, matching biomedical images for diagnosis,
matching stereo images for reconstructing depth or shape, and matching objects
for recognition. To bring multiple images into alignment is one of the most exten-
sively studied problems in areas including computer vision, pattern recognition,
medical image analysis, and remotely sensed data processing. Numerous practical

and theoretical studies have been performed on this subject for several decades.

The relationship between a pair of images could be a single global transforma-
tion, if for example the images are taken from different views of a static planar

surface, or it can be a possibly discontinuous spatially varying transformation, as
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might arise in images taken at different times of scenes containing moving objects.
In either case, determining this relationship (the registration problem) is a difficult
one and often complicated by as occlusion, ambiguous matches, and the presence
of observation noise or distortion. We are interested in finding a single global
transformation in our study, where a single equation maps the entire image, since

we assume the viewing center is roughly fixed.

The goal of image registration is to determine the spatial transform that matches
pixels in one image to similar pixels in another. The problem of registration can
be eased by constraining the type of transformation field to be estimated. The
simplest case is to assume that the field is translational, which is sometimes a
reasonable assumption in tasks such as motion or depth estimation [Chiang93,
Dhond89, Aschwanden93]|. A more general approach is to assume that the images
are related by a six parameter affine transformation, corresponding to dilation, ro-
tation, shear and translation. For example, such a model is appropriate in the case
of a planar surface viewed under the assumption of weak perspective projection
[Li95, Zheng93]. The affine approach gives considerable flexibility in estimating
a wide range of transformation fields and has been adopted in a large number
of registration techniques. A more general model is an 8 parameter perspective
transformation, which arises for a planar surface under translation as well as 3D
rotation, or a camera under 3D rotation about a fixed viewpoint [Ba0o99, Chen00].
When a transformataion does not belong to any of the above models, a polynomial
transformation can be used to approximate the distortions between two images as
long as the distortion is not too great, such as distortions due to moderate terrain
relief [Brown92, Singh92]. A good approximation needs higher order terms, and

thus more parameters are required.

The transformation parameters can be obtained by minimizing either a sum of
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squared intensity difference at corresponding pixels or a sum of squared Euclidean
distance of corresponding pixels. These minimization problems are linear in the
cases of 2-parameter translation, 6-parameter affine transformation, and multi-
parameter polynomial transformations, but are non-linear in the case of perspec-
tive transformation. To perform the optimization, the polynomial approach needs
a large number of correspondences since it generally contains more parameters;
hence, it is computationally expensive. The non-linear minimization problem in-
volved in perspective transformation can be solved by a Gauss-Newton method or
a Levenberg-Marquardt method [Press92, Thevenaz98|. However it suffers from

sensitivity to local minima and high computational expense.

Methods

Generally, there are two basic classes of approach to image registration, non-feature

based and feature based [Pratt91, Haralick93, Deriche93].

The first class comprises non-feature based methods that minimize the intensity
differences between two images, and are referred as optical flow based or gradient-
based, where the spatial and temporal derivatives of image intensity are used to

describe image velocity—the optical flow.

Methods described in [Bergen92, Irani95, Sawhney99, Szeliski97, SzelS97, Aubert99
belong to this category. A basic assumption of these methods is that, when two
images are perfectly aligned, the intensities of corresponding pixels are matched
exactly in the overlap region. Thus, the objective function is a sum of squared
intensity differences of corresponding pixels over the whole area. The objective
function is minimized via the Gauss-Newton optimization technique. These meth-
ods have the advantage that neither feature extraction nor feature matching is

required. Another advantage is their high accuracy because they use information



1.1. BACKGROUND 9

from all pixels in the overlap region—a full density approach. However, the gradi-
ent method assumes a small spatial and temporal variation of image intensity in
formulating the problem. Due to this locality of the intensity gradient constraint,

large pixel displacements cannot be accommodated.

The second class comprises feature based methods [Brown92|. Features (salient
points) are first selected in each of the two images, and corresponding features are
matched according to some similarity metric. An optimization procedure is then
used to compute a transformation that aligns features from one image with cor-
responding features in the other image. Feature points can be corners, centroids
of closed contours, distinctive texture points, or other salient points [Zoghlami97,
Harris88]. Two feature points are deemed to correspond if a small window centred
at one feature in the first image is similar to a window of the same size centred at
the other feature in the second image. This method of feature matching is called
template matching. The similarity measure can be based on image attributes like
intensity distributions, Fourier spectra [Kuglin75, Kruger98], or wavelet coefficients
[Bao99, Zheng93]. The measurements can be normalized cross-correlation (NCC),
or sum of squared difference SSD. NCC correlates two image windows by mul-
tiplication of each pixel’s squared mean difference of attribute, while $SD finds
difference of two images by subtraction and is thus computationally more efficient.
Though NCC is costly to compute, it is generally preferred due to its invariance
to linear change of pixel attribute between matching windows. Other matching
methods include, non-correlation-like flexible histogram models [Bonet98], struc-
tural attributes of extracted objects [Ventura90], contour-chain codes [Li95], sur-
faces [Maurer98], elastic contour matching [Li95, Davatzikos96], moment invariants
[Goshtasby85, Super95] and convex hulls [Yang99]. These feature matching primi-

tives have more disambiguating power compared to intensity values. Among them,
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some are better for remote sensing images [Li95, Zheng93, Ventura90, Bonet98],
some are more effective on multi-channel medical images [Davatzikos96, Chiang93,
Singh92], and others, like Fourior spectra, are well suited for images with frequency-
depended noise [Castro87, Reddy96]. Methods in this category can usually register

1mages with large pixel displacements.

A hierarchical fine-coarse strategy is often used in both classes of registration
algorithms above to enlarge registration scope, to raise efficiency, or to avoid local
minima.

In the first class of gradient-based approaches, the advantages are that they
do not need to perform the difficult and computationally intensive tasks of feature
extraction and feature matching; and they can achieve high registration resolution
due to the use of full density pixel information over the image. The disadvantages
are that they require a coarse alignment within a few pixels and that no large
intensity changes between the images are allowed. The second class of feature based
methods can generally align images with much larger spatial displacement and are
more tolerant to brightness difference and other distortions. The shortcoming
of these approaches are that they are less accurate when the number of feature
correspondence is not sufficiently large and not well distributed in the whole region,
or the features are not precisely located, or false correspondences are present.
Further, computational cost increases quickly with the growth of the number of

correspondences.

Both classes of approach have their merits depending on what kind of images
are to be registered and what is already known about the transformation. Over the
years, a broad range of techniques has been developed in the subject. However, im-
age registration for panorama construction has several specific requirements which

many of the general methods reviewed above do not always address:
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e A perspective transformation, not just an affine one, is required to relate the

1mage pairs.

e Large brightness differences may exit between corresponding points in the

two 1mages.

e There may be small overlap, and the amount of overlap may not be known

before hand—coarse registration may be needed as well as fine registration.

e The method must work robustly for different types of scenes, and scenes of

high complexity.

As a result, we have derived special purpose methods for image registration, relying
on the principles and general ideas already surveyed; these ideas must be adapted

to suit for the panorama construction problem.

1.1.3 Panorama Composition

Given a sequence of images taken from a single viewing position, and the trans-
formations between them, any new view taken in an arbitrary direction from that
viewing position can be obtained directly by sampling and blending the contribut-
ing images. However, using this method to generate new images is hard to do in
real-time. A better approach is to composite a single panoramic image from the
source images, projecting each source image to the pixel map of the panoramic
model, which is then used to render new views. This can satisfy the real-time
requirement. Panoramas can be of several forms, such as rectilinear, cubical,
cylindrical or spherical, as will be described below. The cylindrical panorama
is the most commonly used. The pixel map of the panoramas is a 2D image,

where a reference image is first chosen from the sequence, and all other images are



12 CHAPTER 1. INTRODUCTION

warped in the 2D coordinate system attached to this image by the relative spatial
transformations between them. To composite a panoramic image, the form of the
panorama is first chosen, then the source images are warped, sampled and blended.
As errors exist in transformation parameter estimation, which are propagated in
the registration process, further corrections are required to correct global errors
in the final panorama, as described in section 1.3. Next several common forms of

panorama are outlined.

Rectilinear Panorama

A rectilinear panoramic image is a set of images warped and clipped to rectangular
frames which are placed at equal angles about an axis. This approach is used in
[Szeliski96] for stitching a video sequence together to form a wide scene. It has a
problem of unequal sampling in that there is a different density of information at

the center of each frame compared to its edges.

Cubical Panorama

A cubical panoramic image is a set of six planar projections in the form of a cube
viewed from a center point. This approach has been used in [Greene86, Qickvr,
VRML] for the representation of a complete scene. Such a representation can
easily be stored and accessed systematically. However, it has significant problems
relating to its acquisition and registration. Also, computation of image flow fields
when using multiple cube maps in IBVR applications is not straightforward. It

also has the problem of unequal sampling.
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Spherical Panorama

A spherical panorama projects the source images onto a unit sphere surface cen-
tered about the viewpoint [Szeliski97, Xiong97]. It is obtained by warping and
stitching a source set of images taken two degrees of freedom of viewing direction,
and 360° viewing in both directions. The spherical pixel map can be stored in a
latitude-longitude format, or in an uniform format with equal area sampling. A
spherical panorama is the most natural description of a complete 3D scene, but it
lacks a suitable pixel map representation. If it is stored using uniform equal area
sampling, it is generally ill-suited for systematic access as a data structure. If it is
stored using simple neighborhood relationships such as a latitude-longitude map,
the pixels are non-uniform, and generally quite distorted when mapped to a plane.
When rendering a new rectangular image, the pixel positions of the panoramic
map are generally on a curved grid, thus requiring complex reconstruction and

re-sampling.

Cylindrical Panorama

A cylindrical panoramic image is a wide scene image stored in the form of a cylin-
drical map [Chen95, McMillan95, Szeliski97, Kang98| which is obtained by com-
positing a set of regular images and warping them onto a cylindrical surface. It
provides a limited vertical view. Since the scene on the top and bottom are usually
sky, ceiling and ground which are generally not interesting, a cylindrical panorama

is good enough for representing the scene in most applications.

Cylindrical panoramas are commonly used also because of their ease of con-
struction, and because it can be easily unrolled into a simple planar map that can

be easily stored and accessed by a computer in a systematic way. One shortcoming
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is the boundary conditions introduced at the top and bottom. Usually, it is chosen

not to put end caps on the map.

Both cylindrical and spherical maps will be discussed further in this thesis.

However, we concentrate on cylindrical maps.

1.2 Problem Statement

The main goal of this thesis is to develop techniques which will allow end-users to
easily build a cylindrical panorama for image-based VR and other applications from
a sequence of uncalibrated photographs taken naturally with a hand-held camera,
1.e., without the need for sophisticated calibration devices or turntables. Such
photographs will be called natural photographs. Such images fall into category of
ordinary perspective imaging. The panorama to be built is a single nodal panorama

having a 360° degree field of view in one direction. We also consider briefly spherical

panoramas.

In our research, we assume that the photographer uses reasonable efforts to
keep the camera at a fixed location while taking a series of natural photographs,
with some overlap between adjacent views. It is assumed that the camera is only
rotated in a horizontal plane (panned), and that tilting of the camera towards the
ground or sky (tilting), and rolling of the camera about an axis pointing into the

scene(rolling) are kept to a minimum. The focal length of the lens is assumed to

be the same for all photographs.

Specifically, our assumptions about the natural photographs from which we will

build a panorama are:

e All photographs are taken from an (approximately) fixed view point.
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e The photographs provide a 360° view of the scene.
e The same focal length is used for all the photographs in the sequence.

e Any two consecutive photographs should overlap by about 1/6 or more of

the width of each photo.
e Camera roll and tilt should be kept to a minimum.

In practice, our method compensates for large panning and tilting. However, large
tilting will produce unsatisfactory cylindrical panorama, no matter what method

1s used.

We believe that these requirements should be fairly easy for an amateur photog-
rapher to meet. Examples of images acquired in this way are shown in Figure 1.1.
The methods developed in this thesis composite such a sequence of photographs

to produce a panorama, like that shown in Figure 1.2.

We view the problem as involving two major sub-problems:

e Image alignment: the projective registration of adjacent overlapping images
into the same coordinate system. As long as the images are taken from a
nearly fixed viewpoint, their relative transformation can be approximated by
a perspective transform. We wish to find robust methods to automatically

determine this transform.

e Panorama composition: the source images are projected onto a cylindrical or
spherical pixel map. Pixels in each overlap region are blended from multiple
images. Various global errors in transformation estimation must be corrected

so that the source images represent a closed surface seamlessly.

The difficulties in computing image alignment are perspective distortion, rel-

atively small overlap between adjacent images and brightness differences of the
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same area in different images. Reducing the number of images can make the com-
bination process computationally more efficient, so we want a small set of images
which cover the environment. However, doing so requires large changes in viewing
orientation, producing a greater amount of perspective distortion and potentially
relatively little overlap. Also, the possibility of large exposure differences between
adjacent images is increased. These considerations make image registration more
difficult than in traditional applications like medical imaging and remote photog-

raphy.

In complete (closed surface) panorama composition where we start from an
initial image and work outwards, we also need to overcome the propagated pair-
wise registrations errors, which result in a mismatch on return to the starting
image. We must also correct other errors arising due to incorrect initial estimates

of focal length, and tilting and rolling of the initial image.

Here we consider lens distortion to be negligible. Correction of this distortion

can be found in literature on camera calibration [Zhang00, Faugeras00, Hartley94-1,

Stein95].

1.3 Previous Work

The requirement to visualize a scene with a large field of view has occurred since
the beginning of photography, because a camera’s field of view is smaller than the
human field of view. Earlier works on fusing small images to construct a larger
one can be found in [Milgram75, Milgram77, Shiren89, Peleg81, Burt83|, with

applications to aerial and satellite images.

Image VR applications: the visualization of a full-view scene, or building a full-

view panorama, have been actively explored in the past few years. Recent work on



1.3. PREVIOUS WORK 17

Figure 1.2: Constructed panorama

constructing a composite panorama from images taken from a common viewpoint
with an uncalibrated camera can be found in [Chen95, Szeliski97, Shum00, Bao99];
explicitly determining the camera calibration effect is considered in [Xiong98|. Ap-
proaches to constructing panorama from images taken from a moving viewpoint
are found in [Peleg97, Rousso97, Peleg00]. [Kang99] has studied the various er-
ror effects in building panoramas. There are also commercial panorama building

products, which we will also consider.
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Quicktime VR

A notable commercial product for image-based VR is Apple’s QuickTime VR
[Chen95, Qickvr], which stores cylindrical panoramas at discrete nodes (viewing
positions), and allows a user to rotate at those nodes to produce a new view of the
scene. More recently, these ideas have been extended to also allow cubical panora-
mas. To build a cylindrical panorama, QuickTime VR provides a tool to perform
image stitching, which requires that pictures are taken from a single viewpoint or
center of projection by panning the camera around its optical center using a special
device. This device can take pictures which are separated by approximately equal
horizontal panning angles with minimal tilting and rolling. The software requires
the pictures to have about 50% overlap and the camera to have a known focal
length. These specifications simplify the image registration problem. Automatic
image alignment is performed by a correlation-based method which searches for
image correspondences. Our experience of using this software shows that there
is still much room left for improvement. Even though the hardware provides a
good initial estimate of registration, the software can still fail to register adjacent
1mages.

We have also tried using the Quicktime VR software tools with a handheld
camera without a special tripod and rig, when it is not simple to ensure a pure
horizontal panning. Small tilting and rolling may exist in each images. Thus, image
alignment becomes more difficult, as does the composition of the final panoramic
map, where some rectification must be made for generating a seamlessly closed

cylindrical panorama. The Quicktime VR software does not make such corrections.
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Szeliski and Shum’s Approach

Automatic alignment of images separated by small rotations in 3D is studied
in [Szeliski97, Shum00]. They present a method to create a panorama from a set of
images taken from a fixed viewpoint without camera calibration. Their approach
applies a hierarchical gradient based motion estimation framework [Bergen92| for
stitching panorama images. Two adjacent images are related using one of three
alternative motion models: a 2-parameter translation model, or an 8-parameter

perspective transformation model, or a 3-parameter rotation model.

In the first approach, each source image is warped onto a suitable cylindrical
surface with a known focal length. A 2-parameter translation model (z and y
for unwrapped cylinder) is applied to align the cylindrically mapped images. A
gradient-based registration method is used to recover the 2D translation required.
However, their warping method is only strictly correct if a pure panning motion

has occurred with no tilting and rolling.

In the second and third approaches, they represent image mosaics as a collec-
tion of images with associated geometric transformations, rather than projecting
all images onto a common surface to composite a panorama. The transformations
comprise an 8parameter perspective transformation model or a 3-parameter ro-
tation model(which does allow for tilting and rolling), which are also found using
gradient-based registration methods. This representation can avoid the singularity
problem on the top and bottom when projecting the images onto a cylinder sur-
face. The disadvantage of this mosaic representation is the slow rendering speed,

as blending must be recomputed for each new image required.

The limitation of their gradient-based alignment approach is that it can only

register displacements already known to within a few pixels. They propose using
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a hierarchical coarse-fine algorithm to enlarge the region of convergence, but this
may still fail when the initial displacement exceeds a certain amount. Thus, when
starting with an overlap of less than 50%, their hierarchical algorithm does not
work. ‘To overcome this problem, in [Shum00]|, they suggest using a correlation-
style brute-force search on small patches of adjacent itnages to find a good initial
alignment before using the gradient-based registration algorithm. This brute force
correlation search is very expensive and not particularly robust. In addition, no

steps are taken to exclude false matches.

In compositing a cylindrical panorama, an important task is to close any end
mismatch due to various causes. Shum et al [Shum00] consider errors of this sort
caused by use of incorrect focal length and propagated misregistration errors over
the sequence of images. To deal with these problems, they first suggest a focal
length adjustment method to force the panorama. ends to meet, which actually
stretches or shortens the panorama in width. It is not an ideal solution since
1t introduces an aspect ratio distortion, in proportion to the focal length error.
They also suggest a feature-based global registration method intended to carry
out end closing, where they minimize the errors of correspondence in all images
simultaneously. However, in their objective function, the starting and end images
are not explicitly fixed in such a way as to impose a closing constraint, i.e., that the
whole closed claim of transformation is represented by an identity transformation.

Thus, they actually perform a multiple registration but not a global registration.

To remedy the blurring caused by small camera translations, they suggest
a deghosting (local alignment) technique, i.e., to divide the images into smaller
patches each of which is registered separately. Together with their block adjust-
ment (global alignment) technique, it improves the quality of panorama image.

One problem with this deghosting method is outside the overlapping region there



1.3. PREVIOUS WORK 21

1s nothing to register remaining image patches with: there is no uniform transfor-

mation which relates the whole images.

Bao and Xu’s Method

Bao and Xu [Ba099] use an approach based on wavelets for registering panoramic
images. In their method, the images are decomposed in the complex wavelet
domain and an edge-preserving visual perception threshold is applied to extract
features. These features are matched by the similarity of wavelet coefficients, and
finally these correspondences are used in a Levenberg-Marquardt non-linear least-
squares algorithm to calculate the transformation. To reduce the high computa-
tional cost of this method, they use a hierarchical method to repeat the process at

varying resolutions.

The problems with their method are the following.

e Their approach assumes no tilting and rolling of the camera in order to
make use of the property of scaling and translation invariance of the complex

wavelet transform. Therefore their approach is restricted to pure panning.

e Although thresholding eliminates many points, the remaining edge points
still comprise a large number of features to match. For each edge point of
one image, they restrict the search for a match in the other image to an N x N
neighbourhood about that point. If /V is chosen too small, the method may
fail to find the correct match. If IV is too large, the method is prohibitively

computationally expensive. Thus, in practice, their methods assumes a good

initial alignment is given.

e False matches are unavoidable when seeking correspondences, however robust

a matching metric is claimed to be. False matches are particular harmful
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when calculating the image correspondence transform. In their method, no

measure 1s taken to exclude false matches.

e They use a non-linear least-squares algorithm to find the parameters of an 8-
parameter perspective transformation between each pair of images. This
requires a reasonable estimate of the transformation as a starting point.
When the displacement between the initial images is large, this also causes

them to need to manually provide an initial alignment.

e Their approach performs no gap closing or other refinement of the final

panorama map.

Xiong and Turkowski’s Approach

Xiong and Turkowski’s work [Xiong98| is another application of computer vision
techniques to building a full-view panorama from images captured from a fixed
viewing position. Their approach has a pairwise registration method as well as
a camera calibration and global optimization scheme. A gradient method is used
for image registration, in which they introduce two extra exposure parameters to
allow for exposure differences between adjacent images. The initial transformation
parameters are estimated by a correlation based linear search. These parameters
are then optimized by simulated annealing. They also use simulated annealing in
their camera calibration algorithm where the presence of many redundant overlap-
ping images is required. One problem of this non-linear optimization procedure
is that it can easily become stuck in a local minimum. The initial camera cal-
ibration parameters are interactively provided. In regions where several images
overlap, they perform a Laplacian-pyramid-based blending to determine the pixels

of the final panorama, where they use a separate weighted average on each pyra-
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mid level with different overlap lengths. Their approach requires a large amount
of overlap, resulting in multiple overlaps of many images in the same region, which
increases the expense of panorama construction. The user must also take more

source photographs.

Peleg and Rousso’s work

The above approaches to building panoramas assume that all images are taken from
a single viewpoint, i.e. the camera is only rotated about its optical center. Such
images fall in the category of ordinary perspective imaging, and can be combined
to create the entire viewing sphere or cylinder centered at the common viewpoint.
Further related, but less relevant work is also given in [McMillan95, Szeliski96,
Irani95]. Another different approach is to use images taken with a camera moving
along a smooth path, i.e., multiperspective imaging. This constructs a panorama

which can be reprojected from its manifold representation [Peleg97, Rousso97,

Peleg00].

Their methods create a panorama with an image strip [Peleg97, Rouss097,
Peleg00]. The input images are captured from a smoothly moving camera, which
may be pointing in the direction of motion in the special case, or in a direction
orthogonal to it. In the latter case, the camera may also pan in the normal plane
to the direction of motion. Assuming a known camera motion and a calibrated
camera, thin strips to avoid perspective effects are taken from the input images
and are placed, after warping, onto the mosaic manifold. The manifold is chosen
in such a way that the optical flow becomes approximately uniform. The images
are projected onto a pipe surface whose spine is the camera path. Any derived
new image is then found by re-project from the pipe surface onto a suitable plane.

The method is an approximate approach that requires a high frame-rate and small
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depth differences in the real scene. The resulting panoramas can be interpreted as
texture maps on a 2D manifold embedded in 3D. Because of the complicated 3D
geometry of the manifold, rendering realistic planar images from the panoramas

requires involved computations, and produces results of mediocre quality.

Other work on multiperspective panoramas can be found in [Rademacher98,

Wood97].

Errors in Panorama Construction

In Kang and Weiss’s work [Kang99], the authors have given a study of errors in
building a panorama caused by errors in the camera’s intrinsic parameters, e.g.
focal length and radial distortion coefficient. Their conclusions are that the effect
of focal length error is more significant than radial distortion and that errors in
assumed focal length produce smaller relative errors in length of the composite
cylindrical panorama. Note that the amount of overlap of adjacent images is
determined in part by the focal length. Thus, they suggest that it is possible
to correct the focal length by iteratively computing a new focal length from the
composited panorama length. This method was also used by Shum [ShumO00],

as previously noted. This method of correcting focal length causes aspect ratio

distortion.

Commercial Products

Besides a growing number of research papers, some commercial and free products
exist for panorama, construction and viewing, with some degree of recognition and
success. Notable examples of such commercial products are LivePicture(MGI)’s

Photovista [Photov], Apple’s Quicktime VR [Qickvr](already discussed), and In-
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finite Pictures’ SmoothMove [Smoothmove]. Others are Terran Interactive Inc.’s
Electrifier Pro [Terran], Enroute Imaging’s Quickstich [Enroute], IBM’s PanoramIX
[Hotmie], Interactive Pictures’ IPIX Multimedia Builder [IPIX], Panavue’s Visual

Sticher [Panavue], PictureWorks’ Spin Panorama [pictureworks], and Web3D Con-

sortium’s VRML-browsers [VRML].

Some of these commercial products provide automatic stitching tools, such as
Quicktime VR, Photovista and PanoramIX. We have tried them on various images,
and overall experience is that their automatic registration capabilities are not very

reliable.

Other related work in rending arbitrary view from image-based virtual real-
ity model can be found in [Chang97, Chen97, Coorg98, Debevec96, Gracias00,
Kanade97].

Summary
In summary existing methods suffer from one or more of the following shortcom-

INgs:

e Need for special hardware for taking photographs.

e A camera with known focal length.

e Perspective effects are ignored, and only an affine transform is determined

between each pair of images.
e Tilting and/or rolling of the camera is ignored.

e An assumption is made that relative depth differences in the scene are neg-

ligible.
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Excessively large overlaps are required between adjacent images.
Initial registration is done interactively.

If registration is done automatically, no method is used to prevent false fea-

ture matches from causing incorrect registration.

A global search is used for initial registration, or too many features are used

causing registration to be slow.

Fine registration can fail if initial registration, or assumptions about e.g.

hardware, are too inaccurate.

Non-linear parameter optimization procedure is sensitive to local minima and

computational expensive.

Panorama construction is not treated as a global problem, and mismatches

between final and initial images remain, or are not properly corrected.

The generation of new perspective views from the panorama representation

is somewhat inaccurate.

We aim to produce a method for constructing panoramas under the assumptions

given earlier, which do not have these deficiencies.

1.4 Thesis Contribution

In meeting the goal outlined at the end last section, this thesis reports a new ap-

proach to panorama construction, and the following novel contributions are made.

e An improved algorithm for high curvature point detection used in feature

matching.
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e A gradient and a shape based metric for matching features.

o A two-step registration process using features for initial registration, and a

gradient method for further fine registration if needed.

e An iterative approach with linear steps to perspective transformation param-

eter optimization for pairs of adjacent images.
o A 5-parameter model for gradient based fine registration.

e An analysis of smooth factor in fine registration for enlargement of registra-

tion scope.
e Cylindrical warping methods which allow tilting and rolling to be present.

e Theoretical analysis of the effect of focal length error on the panorama end

mismatch.

e An new approach to gap closing by iteratively adjusting the focal length and

panning angles.

e Corrections to the final panorama which allow for tilting and rolling.

1.5 Thesis Outline

The rest of the thesis is organized as follow: Chapter 2 is an outline of this research.
In Chapter 3, the feature-based registration approach is first described; while in
Chapter 4, the gradient-based fine registration methods are discussed. Chapter
5 presents methods for constructing and tidying of final panorama. Examples
obtained by the method in this thesis are demonstrated in Chapter 6. The last

Chapter summarizes this research and discusses future work.
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Chapter 2

Solution Outline

In our work, we study the building of a single nodal panorama, that is, the
panorama constructed from a single viewpoint, also called the “center of projec-
tion”. A panorama can be viewed as a projection of the scene onto a cylinder or a
sphere through this viewpoint. We suppose we have obtained a series of overlap-
ping natural photographs taken with a handheld camera, from a fixed viewpoint
and with the same focal length. The panoramic image is created by determining
the relative transformations between adjacent images in the sequence. Each im-
age of the sequence is then projected onto a cylindrical surface whose radius is
an initially estimated focal length (see Figure 2.1). Blending between overlapping

source images is performed to construct the cylindrical image.

Since we assume that two adjacent images are taken from approximately the
same location, corresponding image points in the two photographs are approxi-
mately in perspective correspondence. Hence we first find such a correspondence
between a number of feature points from the two images and then use an opti-
mization technique to find the perspective transformation that best relates the

two images. A gradient based fine registration is further performed if necessary.

29
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Figure 2.1: Cylinder model

Briefly, our approach comprises seven main steps:

e Selecting feature points in each image.
e Automatic identification of corresponding feature points in adjacent images.

e Computing a perspective transformation relating a pair of adjacent images

from the matched features.

e Using a gradient-based fine registration procedure to improve registration,

where if the number of feature points is insufficient or the registration error

is too big.

e Initial panorama building by finding the mappings of the images onto a

cylinder, to determine the panorama size and shape.

e Corrections to the transformations for incorrect focal length, camera tilting

and rolling, and deskewing, in order to close the end mismatch.

e Blending the source images to produce the final panorama.
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The first three steps are performed for each pair of adjacent images, and the fourth
step is carried out only when further improvement of registration is needed. The
fifth step maps the images onto a cylinder. Because the transformations are only
found pairwise in these steps, a tidying process is used to make the transformations
globally consistent. Finally, the panorama is constructed by blending the source

images. A more detailed outline of each step is given next.

2.1 Image Registration

To stitch a sequence of images, we need to find the transformations between each
pair of adjacent images. The first four steps of our approach solve this pairwise
registration problem. We begin with our feature-based registration algorithm to
find a set of correspondences and compute a transformation to represent the trans-
formation. If necessary, we then invoke a gradient-based fine registration algorithm

to improve the result.

2.1.1 Feature Based Registration

In our feature based approach, features are first identified in each of the two im-
ages, and corresponding features are matched according to some similarity metric.
An optimization procedure is then used to compute a transformation that aligns

features from one image with corresponding features in the other image.

The feature points we use are significant high curvature points, or referred as
corners for short. To detect corners, we first convert the color image to a gray
scale image and use a Canny edge detector to extract edge images from these gray

images. Secondly, a threshold is used to convert the edge image to a black and
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white image. Thirdly, a thinning algorithm is performed on this image. Finally,
an tmproved high curvature point detection algorithm is applied. In the process,
parameters are chosen so that only significant corner points are retained. The
significant feature points are considered to be all corners in the minimum overlap

region of the right image and then matches are sought from the whole left image.

The matching of correspondences is performed using a preliminary gradient
threshold to reject impossible matches and two novel template matching metrics,
a gradient metric and a shape metric, which are designed to tolerate both intensity
differences and perspective distortions. Finally, false matches are discarded by a

clustering procedure.

Once a set of correspondences has been obtained, initial estimates of camera
rotation pan and tilt angles relating each image pair can be calculated. So an
approximate alignment matrix from which the camera focal length can also be
estimated. An initial transform matrix for each image pair that is used as a basis
for refinement by optimization is then obtained from the transformation matrix

generated from the pan and tilt angles and focal length.

An optimization procedure is then used to refine the matrix parameters. As
a perspective transformation is involved here, the optimization is a non-linear

problem theoretically. We have reduced the problem to a series of linear steps in

our approach.

2.1.2 Fine Registration

In many cases, the above registration method gives good results for panorama
building. However, occasionally, there may be insufficient features found to give

good registration. At other times, a large residual will remain after least-squares
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transformation estimation, which indicates that features have probably been mis-

matched. In either case, we use a further step of fine registration to improve the

registration.

Our fine registration method is based on an optical flow motion detection tech-
nique [Horn81]. Because this method uses information at each pixel in the overlap
region, it is potentially better than just using few feature points, but it can only
recover a transformation differing by a few pixels in an image. The initial esti-
mate of the camera transformation provided above, while not being good enough
for direct use, is a good enough starting point for refinement by an optical flow

method.

Two particular types of registration model are typically used in optical flow
registration methods. In the first case, a general 8 parameter projective model
is used to relate the motion between a pair of images [Bergen92, Szeliski97]; in
the second case, a more restrictive model assumes a camera of known focal length
is used and the camera only rotates between frames giving a 3 parameter model

[Bergen92, Szeliski97].

In practice, we have found neither of these approaches is entirely satisfactory.
The 8 parameter model is time consuming to compute, and also can produce large
distortions in the registered images far from the overlap region, as it allows too
general a type of transformation. While the 3 parameter model is simpler, it has
the disadvantage of not allowing for errors in the focal length, which causes blurring
in the final composited image. Hence, we use a novel 5 parameter model that is

based on the rotation-only 3 parameter model but also allows recovery of the focal
length.

Finally, we note one further refinement. Optical flow methods are based on

the assumption that image intensities vary smoothly across the image, which is
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clearly not true near edges. We thus smooth each image using a Gaussian filter
before applying the optical flow model. This has been found to further improve

the results.

2.2 Initial Panorama Building

Having initially registered individual images pairwise, we now need to stitch them
together to form a complete cylindrical panorama. First, transformations are found
which allow the aligned images to be projected onto planes tangential to the view-
ing cylinder, and warping matrices are computed for mapping the planes onto
the cylindrical surface. This step provides the size and shape of the composite

panorama, information which is needed by the following tidying process.

'To smooth out intensity differences between overlapping source images, we in-
terpolate the intensity of each pixel linearly from the two contributing images
according to the pixel’s distance from the borders of the overlapping region. (As
we assume that there is small overlap between adjacent images, we neglect here
the possibility of three or more images overlapping, although our practical imple-

mentation does also successfully handle such case.)

2.3 Panorama Tidying

Because the steps above register images pairwise, i.e., locally, a gap or overlap—an
end mismatch—may remain between the last and first images. The most satisfac-
tory way of dealing with this would be to treat panorama construction as a global
problem using all images simultaneously. However, formulating the problem in this

way is difficult, and even if done, is likely to be computationally very expensive,
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and quite possibly hard to solve robustly. Thus instead, we take the approach
of making corrections to the initial pairwise transformations to resolve the end

mismatch.

Four separate processes are used in correcting end mismatch. Previous steps
assume the tilt and roll of the initial image are zero. As a result, if these angles
are non-zero, the panorama produced will form a strip on the cylinder in the form
of a sine curve or a helix respectively. This is detected, and the initial tilt and roll

are corrected accordingly.

If the initial focal length estimate is incorrect, the whole panorama will not
exactly wrap around the cylinder, but there will be a gap or overlap. This can also

be detected and used to correct the focal length.

Finally, even after these corrections, the overall unwrapped panorama may not
quite form a rectangle because of remaining minor errors in the pairwise transfor-
mations. A general perspective transformation is used to map the four corners of
the panorama exactly to the four corner of the appropriate rectangle, ensuring a
good match between the last and first images. Essentially, remaining errors are

thus distributed over the whole panorama rather than being concentrated in one

place, reducing their visible effects.

2.4 Panorama Composition and Blending

Having updated the pairwise image transformations, the warping matrices for map-
ping the images to the cylinder are also updated. For each pixel of the destination
panorama image, these transformations determine which pixel of which source im-
age corresponds to it. Pixels in the overlap region are determined by a weighted

blending function which interpolates the pixel intensity of source images according
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to destination pixels’ position in the overlap region.



Chapter 3

Feature Based Registration

"To stitch together a sequence of photographs to build a panorama, we need to
align or register each pair of adjacent images. Since we assume all photographs are
taken from a fixed single location, the problem of image registration becomes one
of finding a perspective transformation which aligns two adjacent images. As we
noted in an earlier chapter, there are basically two categories of image registration
approach: one is feature-based which we will address in this chapter; the other,

which we will discuss in the next chapter, is the gradient or optical flow approach.

In our feature-based image registration approach, salient feature points are ex-
tracted from image pairs by our high-curvature point detection algorithm which is
designed to precisely locate the position of salient points. Corresponding salient
points are then matched by our robust matching metrics, a gradient metric and a
shape metric. An iterative optimization procedure, using linear steps, then mini-
mizes the Euclidean distance between corresponding points to find the perspective

transformation that relates pixels in one image to pixels in the other.

37
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3.1 Overview

Image registration is concerned with the establishment of correspondence between
images of the same scene, and determining the geometric transform that aligns
one image with another. A traditional method of automatic registration is an ex-
haustive search using correlation of two images in the spatial or frequency domain.
However, the computational complexity of this approach makes it impractical even
for medium size images, especially when a general transformation, such as a 3D
camera rotation, i1s involved. To reduce the cost of search, registration is often com-
puted using salient feature points instead of the whole image area. After salient
points are found in each image, correspondences are sought to match salient points
in & pair of images. The correspondences (tie-points) are then used to estimate the
transformation parameters aligning the images via an optimization scheme. This

is the general idea of the feature-based registration approach.

There are three parts to the feature based approach: extracting salient points
in each image, finding correspondences between them, and estimating the trans-

formation parameters from the correspondences.

The first two parts consist of extracting salient feature points in images and
matching feature correspondences between images. The task can be done manually,
but it is very tedious to specify a complete, or even a sufficient, set of correspon-
dences. Therefore automatic methods are exploited. In an automatic approach,
salient feature points are first detected in the regions of interest of each image in
the pair. Typically used features are corners, line intersections, high curvature
points and centroids; instead of points they may also be higher-level structural
and syntactic elements. Using features removes extraneous information contained

in images and reduces the amount of data to be evaluated. In extracting salient
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feature points, we want the features to be unambiguous, precisely located and

invariant under local distortion of the image.

Matching features is the task of finding a corresponding feature in one image
for its counterpart in the second image, which is a challenging task. Contributing
factors to this difficulty include the lack of image structure, repeated or similar
elements in the image, object occlusion, and acquisition noise, which are frequent
in real imaging applications. Various metrics have been developed to decide the
similarity of features. Among them the most commonly used are normalized cross
correlation (NCC) and sum of squared differences SSD. The NCC statistically
compares the similarity of two image windows of the same size centered at the
feature points [Pratt74, Gonzalez93], while the SSD sequentially computes the
absolute squared difference between the two image windows. Other metrics include
coincident-bit-counting [Chiang93| and ordinal measure [Bhat98|. The measured
primitives can be image attributes other than raw pixel intensities, such as Fourier
spectra, wavelet coefficients, contour-chain-code and moments, for example. These
metrics, especially NCC and SSD, are optimal when the features of interest to be
compared are identical. However, image preprocessing is required to improve the
performance if a significant amount of noise is present. Furthermore, false matches
may occur if there are significant differences between two images due to noise and
distortions in the images. Thus, a global consistency check is needed to exclude

mismatches arising from such causes. In the whole registration procedure, a robust

matching procedure is a critical issue.

In the third task, transformation parameters are estimated through approx-
imation from the matched feature correspondences, in which parameters of the
transformation are found so the matched points are aligned as nearly as possible.

In least squares approximation, the sum over all corresponding feature points of the



40 CHAPTER 3. FEATURE BASED REGISTRATION

squared differences after alignment is minimized. The minimum can be determined
by setting the partial derivatives to zero, giving a system of linear or non-linear
equations. To find the best approximation, the number of matched points must be
sufficiently greater than the number of parameters of the transformation so that
sufficient statistical information is available to make the approximation reliable.
Individual matches are likely to be somewhat inaccurate, but taken together they
should contain sufficient information to determine the transformation. The trans-
formation modelled can be an affine, a perspective or a polynomial one. In our
application to building a panorama, the transformation to be found is a perspec-
tive one. Thus, the parameter approximation is in principle a non-linear problem.

An efficient solution to this issue is required.

Based on the above general idea of feature-based approaches, we derive special-
purpose methods for image registration to suit the panorama construction problem.
These must be robust against perspective distortion and must tolerate brightness
variations. In the best case, this approach should provide an accurate image reg-
istration, but in the worst case, it should at least provide an adequate coarse

alignment to be used as the input for subsequent fine registration.

The rest of this chapter is organized as follow: In Section 3.2, we outline our
feature-based registration algorithm. Section 3.3 describes feature extraction, while
Section 3.4 addresses feature matching. The determination of transformation pa-

rameters is presented in Section 3.5. Experimental results are given in Section 3.6.

The last section is a summary of the chapter.
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3.2 Algorithm Outline

As our aim is to devise a fully automatic solution to panorama building, a feature-
based approach is adopted in our work as the first step towards the final registra-
tion. Given two adjacent images with adequate overlap, we perform the following

steps for finding features:

o Edge detection: Edge images are extracted from each image using a Canny

edge detector.
e Ldge thinning: Thinning of each edge image is performed.

o Salient point detection: Salient points are selected from each image by finding

points of high curvature.

The next two steps find matching features:

e Candidate match finding: A local measurement is used to find candidate

matches between salient points in the two images.

e Global consistency checking: A global method is used to remove inconsistent

matches from the list of candidate matches.
The last two steps find the transformation parameters:

e [nitial parameter estimation: We estimate initial focal length, initial panning

and tilting angles, and compute an initial transformation matrix.

o Accurate parameter determination: We perform an optimization procedure

to refine the transformation parameters.

We now discuss each step in detail.
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3.3 Extracting Salient Feature Points

Features, or salient points, are specific pixels in an image which have easily distin-
guished meaningful characteristics in the scene. Features play an important role
in the effectiveness of feature-based registration approaches since finding corre-
spondences and thereafter computing the required transformation both depend on
them. Features should be selected using points that (1) are highly distinguishable
and unambiguously localizable in each image; (2) contain sufficiently discriminat-
ing information for matching; (3) are adequately tolerant of local distortions. Note
that in our application of stitching photographs for building a panorama there are
possibly big perspective distortions and brightness differences between the images.
From these observations we can deduce that local maxima of curvature points on
edge contours in the images are a good choice to be used as feature points. In the
following three subsections, we describe our method of determining maximum cur-
vature points. We use a Canny edge detector for edge extraction, an onion peeling
algorithm for edge thinning, and an improved maximum curvature detector for

feature point extraction. We now begin with a description of edge detection.

3.3.1 Edge Detection

First we convert the input color images from RGB format into grayscale images.
According to the human visual perception of the color spectrum, the eye is most

sensitive to the green component, and less so to red and blue colors. We may

convert from R, G, and B color bands to give a single gray intensity for each pixel

using

Y = 0.30R+ 0.59G + 0.11 5.
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By converting color images into grayscale images, both the time and space costs
of our method are reduced. All processes thereafter are based on this gray scale
image, until the final panorama is assembled. Examples of this conversion are

shown in Figures 3.1 and 3.2. Figure 3.1 contains color images, and Figure 3.2

contains the converted grayscale images.

Figure 3.1: Images with brightness differences and perspective distortion.

Figure 3.2: Converted grayscale images

Next, an edge image is formed from each image using a Canny edge detec-
tor [Canny86|. The Canny edge detector is a significant and widely used contribu-
tion to edge detection techniques. Briefly, the concept of the Canny edge detector

1s as follows.
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Suppose G is a 2D Gaussian

12 + 12
202 ’

G =exp (—-

and G, is an operator which is the first order derivative of G in the direction n

e

~ On

G, =n-vVG (3.1)

where n is the normal perpendicular to an edge. Assuming g is the image, n can

be estimated as
V(G * g)
V(G *g)|

If we now convolve the image with the G, operator, the local maximum in the

n =

direction of n is the edge location, which is given by

0

Combining with Equation (3.1) gives

—8—2—(G xg)=0. (3.2)

On?

This operation is often referred as non-mazimal suppression: it shows how to find

a local intensity maximum in the direction perpendicular to the edge.

Having thus determined the edge location, the strength of the edge (the mag-

nitude of the gradient of the image intensity function g) is measured as

Gnxgl=|V(G*g)|.

A version of the algorithm is implemented in our system, where we leave the
deviation o to be adjustable by the user. In performing the edge detection, we must
use a sufficiently large deviation to smooth the images to avoid spurious edges, so

that only significant edges are retained for further processing, while undesirable
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effects of noise and texture are minimized to remove extraneous information and
reduce the amount of data to be evaluated. An example of Canny edge detection
is shown in Figure 3.3, where o is 2.5. The value of ¢ affects the number of
features detected afterwards. A lower value keeps more edges and thus extracts
more salient points, while a higher value helps to smooth out distortions and noise.

By our experience, the value ranging from 2 ~ 5 is adequate for various images.
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Figure 3.3: Grayscale edge images

We then use a threshold T, to reduce the grayscale edge image to a binary
image. Like deviation, a lower value of T, retains more edges which in turn leads
to more salient points. By our experience, a value of 7, ranging 0.01 ~ 0.3 is
sufficient to include enough significant edges. The value measured is what after
the maximum edge intensity in the image is normalized to 1. Normally we set this

threshold to 0.2. An example of this threshold operation is shown in Figure 3.4.

3.3.2 Edge Thinning

After thresholding the edge images, we perform edge thinning. This step is required
by the later maximum curvature detection which is based on tracing edges of one

pixel width. The edge thinning is done with the aid of a set of masks [Guo092,
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Figure 3.4: Binary edge images

Satoshi87|. Each mask uses the values of the pixels adjacent to the pixel at the
center of the mask to determine whether to keep or discard the pixel as an edge
point. The masks are applied recursively in an “onion peeling” manner until there
is no further change. We omit the detail of how to set these masks, see [Guo92]
for reference. An example of this thinning step is shown in Figure 3.5, the image

before thinning is shown in Figure 3.4.
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Figure 3.5: Binary edge images after thinning
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3.3.3 Feature Point Detection

We now wish to find the feature points in each image. A search is made along each
edge to find points of high curvature as salient feature points. Our high-curvature
detector is adopted from Li [Li95], but is improved to locate the corner points more

accurately.

In [Li95], a high-curvature point is detected using the chain code representation
for the curve. The measure of curvature at the i-th point is defined to be, modulo
8,

e = max {max{|a;; — iy, |55 — @i[}}

where a; is the chain code from point ¢—1 to point 7, and o is the standard deviation
of the Laplacian of the Gaussian used in the edge detector. In his method the i-th
point is chosen as a feature point if (i) ¢; exceeds a curvature threshold C; and (ii)
if ¢; is a maximum value in a neighborhood of length 2/ along the line segment,
le.,

¢ >cpforallkeli—1i+1],

where [ is a length parameter chosen to be [ = 40. However, this approach does
not work well in locating feature points when several points in [¢ —, 7+ (] have the

same maximum curvature. This disadvantage becomes worse if larger values of [
are used.

In light of the above problem, we have made improvements to this method to

make feature point localization more accurate. Firstly, we redefine c; to be

c; = lrgl%{max{%a Aijt}

where

5z',j = 4(Pz‘—-j+1 — Pi—js Pi+j+1 — Pz‘+j)/ 21,
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Py
P,
e
3l ¢
' P,

Figure 3.6: Finding point of highest curvature

Az’,j = 4(Pz‘—j+1 — Pi-j, Pi+j — Pz‘+j—1)/25,
and p; is the i*® point.

Secondly, we introduce another quantity d; at the :** point to record the least

7 which gives the maximum in the expression for c¢;:
di - .7 )
where j is the least index such that

C; = 52',]' or Az‘,j-

When ¢; attains its maximum value in [ — [, 2+ (], the i-th point is taken as the
feature point. When there are more than one such maximum point in [i — [, ¢ + ],

we take the i-th maximum point as the feature point if it also has a minimum

value of d; among all maximum points.

We illustrate the idea in Figure 3.6. Let [ = 5. With the definitions above,
points ps to py have the same curvature ¢; = 75 and all are points of maximum
curvature along the line segment from py to p;4. But the exact position of the

feature point is at py , which has the least value of d;.
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Figure 3.7: Salient feature pomnt extraction

We have also modified Li’s algorithm so as to be able to select and include

T-junctions as feature points.

A critical issue in further processing is the number of feature points detected:
for better accuracy, a correspondence based matching method needs more features;
on the other hand, too many points will make the matching more time consuming.
The number of feature points detected can be controlled by suitable choices of
the threshold values C' and [. We set ¢ = 7. A lower value of | can extract
more salient points. In practice we found a value of [ ranging 5 ~ 20 is adequate
to extract enough features. By choosing a relatively small number of important
features, matching can be done rapidly. Another issue to which attention should
be paid is the interval between features. If the features are too closely located,
they are apt to cause false matches later. We have set a threshold in our algorithm
to only pick up features which are reasonably far apart. Figure 3.7 illustrates the
results of our maximum curvature salient point detector, the salient points being

marked by ‘4’. The parameter [ is chosen to be 10.
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3.4 Matching Feature Correspondence

In this section, we describe our method of finding matching features in a pair of

images. First we introduce some concepts.

3.4.1 Basic Concepts

First we define correspondence. Let I and I’ be two images of the same scene. An
image point p in I and an image point p’ in I' are corresponding points if they
are projected from the same 3D point. A correspondence between two views is a
mapping from one view to another such that each pair in the mapping is a pair of
corresponding points.

Determining correspondence is performed using similarity metrics which are
criteria to determine what types of feature matches are optimal. A good similarity

metric should be robust with respect to various sources of noise in the environment.

The choice of similarity metrics is one of the most crucial elements of the feature-
based registration approach.

When searching for a match between a source window centered at a feature
point and a target window, frequently used similarity metrics are based on the
sum of squared differences (SSD) and normalized cross correlation (NCC). Let I;

and I, represent the intensities of each window of size n X n pixels.
The sum of squared difference is given by
n
SSD = Z(Il(:cz,yz) — Io(20, )2
1=1

This quantity measures the squared Euclidean distance between I; and I and a

value close to zero indicates a strong match.
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The normalized cross-correlation is given by

NCC = Z’?:l(ll (xh yz) — ul)(IQ(ﬂfz‘, yz) — UQ)
\/Z?zl(ll (.Tz, yz) — U1)2 Z?=1(12($Z, yz) — ’1,1,2)2

where u; and uy are the intensity means of each window. This quantity lies in

[—1,1], and a value of one indicates a perfect match. Notice the cross-correlation

1s normalized so that local image intensity does not influence the measure.

Generally, the NCC metric is preferred to the SSD as it is invariant to a lin-
ear gray-level shift between otherwise perfectly matching windows, but SSD is
computationally more efficient. The basic assumption used by these two metrics
1s that these windows represent the same location in the scene and have identi-
cal intensity distributions. However, the assumption is violated due to a number
of physical phenomena because of which intensity data in windows around cor-
responding points can be inconsistent. For instance, when perspective distortion
and illumination differences are present, the peak of the metrics may not be in
the expected position. To deal with the problem, we now derive new matching

metrics, and explain our matching procedure.

3.4.2 Preliminary Matching

Having found feature points in each image, locally consistent matching features are
found in adjacent images. The width of the overlapping region is assumed to be
at least 1/6 of the width of the two adjacent images, to provide sufficient matches
to be found to allow registration to be performed. Thus, salient feature points are
found in this 1/6 of the first image, and then their counterparts in the second image
are sought over the entire second image, as the actual amount of overlap may be
greater than 1/6. In searching for the counterpart of a feature point, we carry out

a three step matching procedure which uses a preliminary derivative threshold to
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rapidly discard poor matches, followed by a gradient template measurement and

a shape template measurement for reliable detection of locally correct matches.

First order image derivatives have opposite signs on edges of increasing intensity
and edges of decreasing intensity. We use this property to find candidate matches.
Thus, the signs of first order image derivatives at each feature point from the
first image and at each feature point from the second image are compared. This
comparison effectively eliminates a large number of impossible matches by imposing
that two potentially matching feature points have compatible gradient directions;
only when they do are the pair entered into a list of candidate matches. This
list i1s further assessed by two more sophisticated metrics, a gradient template
metric and a shape template metric. In the gradient template metric, we measure
normalized cross-correlation separately on the z and y partial derivative images.
This measurement is much more robust than computing cross-correlations on raw
intensity 1mages

since derivatives represent the image structure and thus is in general more
invariant to radiometric influences than does the raw intensity. This metric is
also more robust than computing cross-correlations on edge images which have
lost all directional derivative information. As images may have large perspective
distortions in our problem, we also use a similarity metric based on edge shape to
make feature point comparison more stable with respect to distortions. Details of

these two metrics are presented below.

3.4.3 Gradient template metric

Let I and I’ be two image windows centred at feature points P and P’ in the two

images, respectively. Other quantities for the second window will also be denoted



3.4. MATCHING FEATURE CORRESPONDENCE 53

by ' as appropriate. Let V,I and V,I be the partial derivatives of intensity for
window /. Let u, and u, be the means of the partial derivatives VI and VI over
the window. We define the normalized cross-correlation gradient template metric

between I and I’ to be

NCC(P.P) = L ( S (VeI (7, 1) — ) (VoI (3, 3,) — ul)
2 \V2im (Val (2, 3) — uz)*/ 30 (VI (21, 5) — )
21 (Vo (20, 1) — wy) (Vi I'(m0, 1) — )
Vo (VI u) = ) /S (Vo' (@, 1) — )2
This NCC(P, P') metric is first applied to all possible feature point pairs (P, P’)
in the candidate match list. Clearly, 0 < NCC(P, P’) < 1. Two threshold values
Ty and T3 with 0 < T, < T} < 1 are pre-specified. A pair for which NCC(P, P’)

_l_

exceeds a threshold 7} is provisionally accepted as a pair of tie-points, i.e. as
corresponding feature points. Those pairs for which 7o, < NCC(P,P') < T
will also be provisionally accepted if they are shown to be a good match by the
shape template metric described below. Any pairs for which NCC(P, P') < T
are rejected. In this NCC(P, P') measurement, a value close to 1 indicates a good
match. Practical experiments have shown that a value exceeding 0.6 is good enough
to provisionally accept a match, while a value smaller than 0.3 is bad enough to

warrant rejection. So, we take 77 = 0.6 and 75 = 0.3.

The exact values of these parameters are not critical, as the candidate matches
will be further evaluated by another metric and mismatches will be excluded by a

consistency check afterwards.

3.4.4 Shape template metric

Consider a small window W centered at a salient point P. The distance from

each window boundary point to the nearest point of the edges in the window is
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Figure 3.8: Shape feature vector

measured, and all such distances are used to characterize the image structure near
P. As illustrated in Figure 3.8, these distances (hatched) from the four sides are

concatenated, smoothed, and sampled to form a feature vector f(z), where

Here g(z) is the distance from a point on the window border to the contour, w(t)
is a smoothing filter, ; is the filter length, and ¢; is the sampling interval. Then,
given two template windows around P, and P, to be matched, the shape template

metric D1 between them is the absolute difference between their feature vectors,

1.e.,

Diy =) |fi(z) = fol@)].

=0

A given P, is matched to P, if D is the minimum among all possible choices for

P,, and simultaneously, for P, Dy, is the minimum for all possible choices of P;.
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3.4.5 Global match consistency checking

By this stage, provisionally matched pairs of salient points as determined by the
gradient template metric and the shape template metric have been found. However,
these metrics depend only on local image information in a neighborhood of a
salient point, so a match that is acceptable only according to these metrics is not
necessarily a true match when considered globally. To address this problem, we use
a clustering technique to check which candidate matches yield mutually consistent

information about the perspective transformation to be found.

Each pair of tie-points determines an approximate pan and tilt angle that relate
the adjacent images. These two angles may be represented as a parameter point in
a 2D parameter space. After representing all pairs of tie-points in the parameter
space, only tie-points whose parameter points are in the largest cluster are accepted
as true matches. Other tie points are regarded as unreliable and thus discarded. In
performing clustering, a threshold d is set to compare the distance from a feature
point to the center of a cluster. If the distance does not exceed this value, the
feature is merged into this cluster. The center of a cluster is recomputed each time

a new member joins in. The idea is demonstrated in Figure 3.9.

The clustering technique is a classical statistical method [Stockman82, Goshtasby85].
The method has a time complexity of O(n*), where n the is number of correspon-
dences. This becomes prohibitive as the number of points grows. In our appli-
cation, as will be discussed in the following section, it is possible to achieve a
fine resolution of registration with a relatively small set of correspondences. As a

result, the time taken for clustering can be kept low.

A final result of correspondence matching is shown in Figure 3.10, which shows

the remaining matches left after the preceding steps, including global consistency
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Figure 3.9: Clustering for global constancy check

checking.

Figure 3.10: Tie-points identified on edges

After this global consistency check has been done, the perspective transfor-
mation between the two adjacent images is found using an error minimization

procedure described in the next section.
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3.5 Finding the Perspective Transformation

In this section we show how to find the perspective mapping M that aligns two
adjacent images. The procedure consists of an automatic initial estimation of the

parameters and an optimization procedure to improve the estimate.

3.5.1 The problem

Consider two initial images. Since the camera is assumed to be at a fixed location,
the transformation M that relates two images is a perspective transformation,
which can be computed from the correspondences between the salient points (z,, ¥,)
in one image I(z,y) and the matching salient points (z!,y;) in the other image

I'(',y'),»=0,1,..,n, where n + 1 is the number of feature matches.

The general model for a perspective transformation is an 8-parameter 2D ho-

mogeneous matrix M [Faugeras93, McMillan95]:

/mo mi mg\

M = mg MMy TNy ) (33)

\mﬁ M7 1/

which maps points in one image into points in the other via

) MZ, + MY, + Mo

T, =
MeZ, + mry, +1
;) M3T, + MyY, + Ms

%= MeT, +mry, +1

The parameters can be found by minimizing the sum of squared Euclidean distance
between the transformed points in one image and the unchanged points in the other
image. Obviously, this is a non-linear optimization problem for the general model.

The problem can be solved by using the Leveberg-Marquardt algorithm. However,
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this approach is apt to become trapped in local minima and is computationally
expensive. Furthermore, our special case of camera rotation does not allow a
general perspective transformation. Thus, this general model contains extra free
parameters which may lead to poor parameter estimates. We show next that the

transformation in our application can be described by four unknowns.

P(X,Y,2)
N/
NP

Figure 3.11: Perspective transform with images of camera rotation

Let 0,, 0, and 0, be the relative angles of camera panning, tilting and rolling,
respectively, for the two adjacent images I and /I’. Panning is (intentional) camera
rotation about a vertical axis, tilting is (accidental) rotation of the camera towards
the floor or sky about a horizontal axis, and rolling is (accidental) rotation of the
camera about a horizontal line perpendicular to the image. Let f be the camera
focal length, the distance between the centre of each image plane and the camera’s
optical center o; f is fixed but unknown. These four parameters 8,, 6,, 6, and f

are to be found, and determine M.

Let (X,Y, Z) be a 3D world coordinate with its origin at o. Let (z,y) be a 2D

image coordinate with its origin at the image center ¢, and for which the z and y
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axes coincide with those of 3D coordinates. Suppose P = (X,Y, Z) is a 3D object
point. Its projection on the first image is p = (z,y), and on the second image is
p' = (z',y): see Figure 3.11.

The camera rotation matrix is given by

( cosfy 0 sinf, \ / 1 0 0 \ / cosf, —sinf, O \
R(9y7 0:1:9 Hz) — 0 1 0 : 0 cos 93; — 8in 03 ) sin gz COS Bz 0 :(34)
\ —sin6, 0 cosfy | \ O sinf, cosfy | \ 0 0 1

which transforms the 3D point P to a new point P' = (X',Y’, Z') where

[ x7 [ x )

\ 7" \ Z

As f is the distance from camera optical center to the center of each image,

the perspective projection of a 3D point onto an image plane is given by

_J
a:-—ZX,

Denoting

[t 0 0)

V——"OfO)

\ 0 0 1)

we can rewrite the coordinates of the image point in a matrix form as

/x\ /X\

\1)  \Z)
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where o means proportional to within a scale factor. The same holds for the image

point in the second image p' = (2, /)

/ ' \ / X' \
Y’ x V- Y!
\1/)  \Z
Substituting Equation (3.5) into the above Equation yields
( z’ \ / X \
y' 0.6 V-R(Hy,é’m,@z) . Y .
\ 1) \ Z )
Combining this with Equation (3.6) gives

/:v’\ /x\

y |« V-R(0,,65,0,) V| 4
\ 1) \ 1)

Thus, the perspective transformation matrix we seek has the following special form

M=V R(8,,60,80,) V. (3.7)

Let an image point (z,y,1) be mapped by M to (Z,7,1). Our goal is to

determine the above unknowns so that the matching error,
n
~ o~ 2
E=) | (zhvh)— &) |
1=0
is minimized. This is a nonlinear problem that does not have a closed form solution.

We have devised a method to solve it using an iterative technique, in which each

iteration entails solving a linear equation, as we now explain.
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3.5.2 Initial Parameter Estimation

First, the focal length is estimated using an 8-parameter model—we represent
the transformation using a general perspective transformation, whose matrix is
arbitrary up to an overall scale factor. Four matching pairs of points are chosen
which are well separated in both z and y, and are far from being collinear. A linear

system in the homogeneous coordinates of these four points can be set up as
x; =Mx; fori=1,...,4 (3.8)

and solved to find the perspective transformation M using Equ.(3.3). From M, f
is estimated as explained below. Although this process is not accurate, the focal
length does not have to be found accurately at this stage, as the subsequent calcu-
lations are relatively insensitive to errors in the estimate for f (see Section 5.3.3),
which justifies the simple approach above based on only four matching points. The

estimate for f is refined at a later stage of panorama construction.

To find f, we expand the rotation matrix R as

/ mo Ty m2/f \
R=V"-M-V=| mg my ms/f
\ mef mrf 1 )

If M has exactly the desired special form, R is a rotation, and any two rows or

columns should be orthogonal and each row or column vector should have unit
magnitude. In practice, matching and numerical errors may prevent these condi-
tions from being exactly satisfied. However, by assuming that they are, we can
estimate f in various ways. Following [Shum00], equality of magnitude of the first

two rows, and orthogonality of the first two rows, leads to the following estimates

for f2:

2 2
my — My

f=

— ?
m3 + m?2 — m2 — mj
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Figure 3.12: Estimation of initial angles

Mot

12 =

— Moty — MMy

The initial estimate for focal length is then taken to be the average of these two

estimartes.

Let 0y, 040, and 0,9 be the initial estimates of pan, tilt, and roll angles. We
assume that 6,9 = 0, since the user is much less likely to roll the camera significantly
than to tilt it, because there is often a horizon or other horizontal reference line
in the picture. Initial pan and tilt angles are estimated by averaging the pan and

tilt angles over all tie-points:

n

, .
0.0 = Z(arctan Ji _ arctan %)/n,

1=0 f f
= T Z;
byo = Y (arctan =+ — arctan —)/n,

= / f

respectively. See Figure 3.12.
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3.5.3 Accurate Parameter Determination

Given the above estimates for f, 6,, 8., and ,, we can construct Mg, our initial

estimate of the transformation matrix, using Equation 3.7.

Note that M, should not be computed from Equations (3.8) and (3.3) as it is
likely to be insufficiently accurate for image alignment purposes, in that it may
differ too much from the required special form based on rotations, due to the extra
free parameters in the general model, and lack of precision in locating feature

points, see an example in next chapter, Figure 4.6.

The initial estimate M, is refined by finding subsequent approximations M} by
means of incremental updates. More specifically, let M, be the current approxi-
mation. An update matrix AM; is found by minimizing the error F induced by

My,. Then the subsequent approximation My, to the correct M is given by

My = AM - M,
AM, - AMy_1--- AM, - M,.

We explain how to determine AM; below.

Suppose that an approximate matrix M} has already been found in the form
M, = VRkV_l.

Let us consider applying an incremental rotation matrix AR, with angles Af,,

Af,,, and A, to the rotation part of M} to produce the next approximation M.
Thus

My, = V-ARy-Ry -V

V-ARy- V™ -V-Ry- V™

|

AMy, - My, (3.9)
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where

AM, =V - AR, -V (3.10)
and, using the notation of Equation (3.4),

ARy, = R(A8,, Ab,, A8,). (3.11)

Let d; = Af,, d, = Ab,, and d, = Af,. Because the incremental angles are

small, and sinf =~ 6 and cos @ ~ 1 for small 0, it follows that

(1 04d,\\ (10 o\ [1 =d o)

AR = 0 1 0 |0 1 —dy || d. 1 O
\-dy 0 1) \od 1 ) \o 0 1)
[ 1 —d, dq,
= | d 1 —d | (3.12)
~dy dy 1 )

Combining (3.10) and (3.12) yields

(1 4, dyf )
AM; =~ d, 1 —d.f |- (3.13)

\ —dy/f d:c/f 1 )

Since the focal length in pixel units is normally much larger than the magni-

tudes of d, and d,, we may assume that the last row of AM) is approximately
(0,0,1). This observation allows us to formulate a linear optimization problem for

the variables d;, d, and d,, which makes the problem tractable.

Suppose that (z¥,y*,1) is mapped to (z**1, y**1 1) by AM;:

[ oh+1 (xk\

yk-l-l - AM]C yk

\ 1/ \ 1)
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After the update by AM,, the matching error becomes

n
E=)|l(z}, o)—(ahtl, o) 2
1=0

fd '
_fda: Z

A:cf

—d,
0

Ayk

(.

fdy
'"fda:

where Az¥ = ) — zk Ay =/ — y*.

Minimizing of the matching error is achieved by setting partial derivatives of

E with respect to dy, d, and d, to zero. This gives

r

Z?:O(Ayf - dzxf +d;) =0
< Z?:D(Axf + dzyf - dy) =0 )
Z?:—.o[(Awf + d, Y — dy)yk — (AykF — d,zF + d;)z*] = 0

\

which can be written as

A-(dg, dy,d,)" =B (3.14)
where
[ nf 0 gk )
A= 0 nf - yF )

\ Sk Sk - (R + (29)?) )

T
B= (— > Ay Axk)> (Axbyf - Ayfmf)) -
These linear equations can easily be solved for the angular increments (d, dy, d,).

The incremental update matrix AMjy is then given by (3.10).
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By using the original matrix AM; in Equation (3.10), instead of its approxima-
tion in (3.13), for updating, we ensure that the rotational constraints are preserved:

otherwise, errors may accumulate.

Our experiments show that the series M) converges rapidly and 4 to 5 updates

are normally sufficient for E' to reach a small value.

An example of the registration produced using the above approach (after map-

ping the images onto a cylinder) is shown in Figure 3.13(a).

(a) (b)

Figure 3.13: Registered image and difference on edge image in overlapped region

The right part of Figure (b) is the difference on edge image in overlapped region.

3.6 Experiments

In this section, we provide experimental demonstrations of the effectiveness of the
feature-based registration algorithm presented in this chapter. A variety of images,
deriving from differing sources, have been tested: an analogue film camera, a digital

camera, and computer generated images.
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To choose enough features, we have found in practice that the parameters need
to be set as follows: o = 5 at most for the standard deviation of the Canny edge
detector, Ty = 0.3 for the threshold value for converting grayscale edge images to
binary images, and | = 20 with C = 4 for maximum curvature point detection. If
they are given lower values, more features are found, and the algorithm takes longer
but the final results are only marginally improved. Thus we recommend that for
most users, the parameters be set to o = 2.5, T, = 0.2 and [ = 10. We recommend
that the matching window size be set to s = 30, i.e. the template used be 30 x 30
pixels. We also recommend that a pair of salient points whose gradient metric
value is greater than 7T; = 0.6 be taken as matched candidates, those less than
15 = 0.3 be considered insignificant and not used for image registration, and those
between 77 and 75 be put into the candidate list if accepted by the shape metric.
The clustering threshold is set to d = 0.035. The user can change some of these
values, but in practice rarely needs to do so. For all the examples shown below

in this chapter, we set the parameters to be the same as the above recommended

values.

Two sample images scanned from film photographs were already shown in Fig-
ure 3.1. The images have both intensity differences and large relative perspective
distortions. Detected tie-points (corresponding feature points) are marked ‘+’ in
Figure 3.10. Thirteen tie-points were detected. The resulting composite image
after registration, mapping onto a cylindrical surface and developing, was shown

in Figure 3.13. In this example, the minimum image overlap was 16%.

Normally, for building a cylindrical panorama, we expect the tilt rotation to be
small, but our registration method does allow recovery of a large tilting angle as
well as panning angle, if necessary, as seen in Figures 3.14-3.16. Seven tie-points

were found in Figure 3.15; The feature extracting region of the left image is 16%,
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Figure 3.15: Tie-points identified in each image

which is the default minimal overlap region. The result of registration is shown in

Figure 3.16. Again, this pair of images came from scanned film photographs.

To show the robustness of the algorithm, we include an example of richly tex-

tured images: see Figure 3.17. The images in this case were captured using a

digital camera. Since our method takes note of the image structure in the over-

lapping region, it can easily align these two images with each other. Twenty two

tie-points were identified, shown in Figure 3.18. The aligned image is shown in

Figure 3.19. Another example of registering highly texture images are shown in

Figure 3.20, 3.21 and 3.22, which are scanned in film photographs remotely taken.
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Figure 3.16: Registered image (building)

Figure 3.17: Images with heavy texture

An example of computer generated images is shown in Figures 3.23. When the
number of features extracted on the minimum overlap region of the left image is
not sufficient (less than 6, for example), the region is extended in order to include
more features, such as it was extended to 50% in this example. Thirteen pairs of
tie-points were found—see Figure 3.24. The aligned images after transformation

are shown in Figure 3.25.

In Table 3.2 we list the estimated initial parameters and the final transforma-

tion matrix obtained from optimization. The initial parameters are pan and tilt
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Figure 3.19: Registered image(tree)

angles, focal length, and the initial transformation matrix calculated from these
values. The final transformation parameters for aligning each image pair shown in
Figures 3.1, 3.14, 3.17 and 3.23 are listed below each of their initial parameters.
Note that here we show the final result of 8 parameters of transformation matrix
but not the final pan, tilt and roll angles. That is because we use the original
matrix AM; in Equation (3.10) for updating each step in the optimization pro-
cess, where 1t 1s tricky to reversely calculate the angles from the rotation matrix
in Equation 3.7, though using the angles to show the result would be better for

comparison.
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Images fug b2 f mo my me ms N ms me my mg
Fig.3.1 —0.777 | 0.005 334.0 | 0.713 | -0.003 -231.577 0.000 1.000 | -1.629 0.002 | 0.000 | 0.713
aligned 0.704 | 0.067 —~234.720 | —-0.074 | 1.000 | 6.443 0.002 | 0.000 | 0.704
Fig.3.14 | —0.735 | 0.120 334.0 | 0.743 | -0.0791 | -219.616 0.000 0.993 | -39.051 0.002 | 0.000 | 0.738
aligned 0.743 | —0.012 | —222.71 —0.070 | 0.997 | —31.604 | 0.002 | 0.000 | 0.733
Fig.3.17 | —0.514 | —0.018 | 358.0 | 0.871 | 0.009 -175.96 0.000 1.000 | 6.325 0.001 | 0.000 | 0.871
aligned 0.868 | 0.059 ~177.42 —0.052 | 1.000 | 10.465 0.001 | 0.000 | 0.868
Fig.3.23 | —0.260 | 0.002 259.8 | 0.967 | -0.001 -66.036 0.000 1.000 | -1.480 0.001 | 0.000 | 0.967
aligned | —0.260 | 0.002 259.8 | 0.966 | 0.009 —~66.90 —~0.009 | 1.000 | 0.086 0.001 | 0.000 | 0.966

Table 3.1: Estimation of parameters

The test results of this feature-based registration approach on 10 sets of image
sequences, total 122 pairs of images, are 76% visually fine registered, 21% coarsely
registered, 3% failed. See Table 3.1, the first column is the name of image sequence,
the second, third, and fourth columns are the number of image pairs that are finely
registered, coarsely registered, and not registered respectively. The fifth column is
total number of image pairs. The last column shows the image type (whether they
are taken from film camera or digital camera). The last two rows in the Table are

the total number and percentage of each group.

The algorithm presented in this chapter is quite robust and reliable as long as
corresponding features are available. If insufficient feature information is extracted,
we only keep the initial parameter estimate but do not performing the feature based

parameter optimization. Further parameter refinement is done by a gradient based

registration method given in the next chapter.

If we carefully examine Figure 3.16, we can observe some blur in the middle of
the aligned image, suggesting impreciseness of the estimated transformation pa-
rameters. Assuming that this error is not due to camera translation, the parameter
errors may be due to two causes: one is error in locating feature points, which gen-
erally has a small effect on the result. The other is due to mismatched features,

which can have a very adverse effect on the result. If the latter case happens, it is
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Image sequence | Fine | Coarse | Fail | Total pairs | Type
lo 7 1 0 8 Scanned in film photos
mBld 3 4 1 8 Scanned in film photos
hku 10 4 2 16 Scanned in film photos
japl 8 4 0 12 Scanned in film photos
mb] 7 2 0 9 digital camera photos
mbm 8 5 0 13 digital camera photos
scysl 15 0 0 15 digital camera photos
cycl 13 2 0 15 digital camera photos
peak 9 2 1 12 digital camera photos
garden 12 2 0 14 digital camera photos
Sum 92 26 4 122
Percentage 0.76 | 0.21 0.03

Table 3.2: Results of feature-based registration
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likely that a large residual error will remain from the optimization procedure. In
such a situation, the result of optimization is discarded as unreliable, and the ini-
tial parameter estimates are kept to be used as the starting point for the gradient

based fine registration.

Tests show that our method is sufficiently fast for realistic use in a commercial
application. This feature-based registration method running on a Pentium III 500
MHz PC takes about 2~3 seconds for a typical image pair shown in this chapter,
with image size ranging between 320~390 pixels in width and 240~260 in height.
Canny edge detection takes about 1.5 seconds out of this time. Since there are
only three rotation parameters involved in the optimization procedure, a small set
of corresponding pairs can achieve a visually good result. This makes both the
matching process and the approximation of the transformation computationally

efficient.

3.7 Summary

In this chapter, we have shown how images taken from a common viewpoint can
be registered using a feature matching scheme. The approach results in a fast
method that produces visually good results when a large panning rotation as well
as small tilting and rolling has occurred between adjacent images. In the first stage
of our method, salient feature points of maximum curvature on edges in the images
are located. The maximum curvature point detector is set up so that it finds a
small number of salient feature points in each image. In the second stage, feature
points in the right image are matched with feature points in the left image. Two
matching metrics are used, a gradient metric and a shape metric; a preprocessing

step is used to quickly reject impossible matches. The motivation here is to tackle
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the difficulties of exposure and lighting differences in image acquisition, as well as
the relative perspective distortions between the images. The gradient metric used is
particularly robust against brightness variations between the two images. The use
of a large deviation factor in edge detection not only smoothes out image noise but
also helps to overcome distortions. The shape metric is designed to further pick up
correspondences under relatively large perspective distortions. In the last stage, a
perspective transformation is determined by an approximation procedure using the
matched features. We have shown how this optimization problem can be realized
by an iterative scheme with linear steps, where the transformation based on our
application of the rotation model is represented with four unknown parameters.
To obtain the starting parameters for performing the optimization, initial camera
pan and tilt angles are estimated from the matched features assuming a zero initial

camera rolling.

Since the 4-parameter feature-based model includes all the camera constraints
in our case, a small number of tie points are sufficient to provide reasonably good
overall alignment. Our method is adequately fast. Canny edge detection is the

step which overall takes the most time.

The method works well as long as a sufficient number of features are extracted
in the overlap region and similar features are not repeated too often over the
whole region. Otherwise, the approach may only provide a coarse alignment. To
improve the registration resolution, we may further invoke a gradient-based fine
registration method to be described in the next chapter. This is done if the number
of correspondences is too small, or the residual error from optimization process used

to estimate the transformation parameters exceeds a threshold.

The proposed algorithm serves as an important building block for the whole

system of panorama construction.
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Figure 3.23: Images generated by computer

Figure 3.24: Tie-points identified on edges
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Figure 3.25: Registered image
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Chapter 4

Fine Registration

This chapter provides a study of the application of gradient-based motion detec-
tion techniques (i.e. optical flow methods) to registration of adjacent images taken
using a hand held camera for the purposes of building a panorama. A general
8-parameter model and a more compact 3-parameter model for transformation es-
timation are described from two different starting points. Both of these models
are approximations of the real situation when the viewpoint position is not abso-
lutely fixed but includes a small translation, and thus distortion and blurring are
sometimes present in the final registration results. We propose a new 5-parameter
model that shows better results and has less strict requirements on good choice of
initial unknown parameters. An analysis of the displacement recovery range and

its enlargement using Gaussian filters are also given.

4.1 OQOverview

Image registration can also be viewed as camera motion recovery. The problem of

recovering motion information from optical flow has been extensively studied for

79
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two decades [Alvarez00, Aubert99, Barron94, Bergen92, Horn81, Nage86, Verrig9].
In this chapter, we review the basic idea of the technique and show how to use
1t to solve our particular problem of registering partially overlapped images taken

from an approximately fixed viewpoint.

Optical flow is the apparent motion of intensity patterns when the objects
that give rise to them move, or equivalently, a moving camera is pointed at a
static scene. In simple situations, optical flow is the projection of the velocity of
moving 3D objects onto the 2D image plane. It is described in terms of spatial and
temporal derivatives of intensity in the image, and it can be used to recover object
or camera motion and object surface shape. Optical flow based methods for motion
recovery are also referred to as gradient based methods. It is a classical method for
recovering continuous object motion. Since in our application, the two adjacent
images are already roughly aligned using the feature-based method presented in
the previous chapter, their sub-images in the overlap region can be regarded as
having small difference due to camera motion. Thus, the fine registration problem

now is subject to the approach of optical flow.

Optical flow approaches are different from feature-based methods discussed
in the previous chapter. The latter are discrete methods in the sense that only
feature points are considered, while the optical flow method may be viewed as a
continuous method in that all image points contribute to the calculation. It is a full
density approach in that it can recover the motion of every pixel in the image. The
disadvantage of optical flow methods is that they usually assume a small change
between neighboring images (i.e., the scene is displaced by a few pixels at most),

while feature based methods generally do not require that assumption.

For a fully automatic approach to registration, we thus first use the feature-

based method presented in the last chapter to coarsely align the images to within
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a few pixels, and then employ a gradient-based method to refine the registration,

using much denser information.

The image alignment problem we consider in panorama building is restricted to
a special type of motion that enables the optical flow method to give meaningful
solutions. The motion model is termed a planar surface flow model, or a rigid
body model in [Bergen92], or a 3-parameter model in [SzelS97]. We discuss these

models in more detail shortly. A new 5-parameter model is also proposed here.

Optical flow methods are based on the assumption of smoothly varying inten-
sities in an image, whereas real images have sharp edges. We thus employ Gaus-
sian smoothing to improve the performance of our optical flow method, which in
particular allows us to handle large displacements in a different manner to the tra-
ditional hierarchical coarse-fine strategy. An analysis of the relationship between

the smoothing factor and the displacement which can be recovered is given.

There are two steps in optical flow based methods: the first is estimating optical
flow, the second is estimating camera motion from the optical flow. In Section 4.2
we introduce basic formulae for optical flow. Section 4.3 gives the particular form
of optical flow for a moving planar surface, while Section 4.4 derives the same
result from the viewpoint of a planar perspective transformation. Discussion of
the models and test results are given in Section 4.5. The use of image smoothing

to allow registration with large image displacements is studied in Section 4.6. We

summary these ideas in Section 4.7.

4.2 Optical Flow Approach

When an object moves in front of a camera, or a camera moves through a static

environment, there are corresponding changes in the images taken with the camera.
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These changes provide information that allows us to recover the relative motion as
well as shape information about the objects. In this section, we begin by reviewing
mathematical descriptions for the brightness changes in images caused by motion,
giving a definition of optical flow and the basic constraint it provides. Then,
in particular, we consider motion models which can be described by a linearized
optical flow constraint; which allows a least squares solution to motion recovery

and hence image registration.

4.2.1 Definition

Let p be the image point of a 3D object point. Then either moving the object
or the camera will cause a movement of the image point. Let (z,y) denote the

coordinates of p in the image. Then the velocity of its movement in the image is

dx __.glg

U=— U= —,
dt dt

u = (u,v)? is the vector field of 2D velocities, commonly known as the optical flow

field.

The optical flow at each point in the image is the instantaneous velocity of
the brightness pattern at that point. In particularly simple situations, such as
a moving planar surface, the apparent velocity of the brightness patterns can be
directly related to the movement of surfaces in the scene or the motion of camera.
Computing the motion of points on the object or camera, and hence registering
successive images is a matter of simple geometry once the optical flow is known.

Thus, first we need to estimate optical flow. We give below a description of the

basic constraint formula of optical flow [Horn81].
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4.2.2 Basic formula

At time ¢, let I(z,y,t) be the intensity at image point (z, y). This point is the
projection of an object point (X,Y,Z) onto the image plane at time ¢. At time
t+0t, suppose this object point moves to (X +36X,Y +6Y, Z + 0Z). Tts projection
point onto the image plane moves to (z + éx,y + dy), and the intensity at this
point is I(x + dz,y + dy,t + 6t). A basic assumption of the optical flow approach

is that this intensity is the same as it was at time ¢, that is
Iz +dz,y + oy, t + 6t) = I(z,y,t)

If the object is smooth and moves smoothly, i.e. the brightness varies smoothly
with respect to z, y and ¢, we can expand the left-hand side of the equation above
in a Taylor series. Simplifying and omitting the second and higher-order terms,
we obtain

ol oI ol

I(x,y,)—l—(Sx—ga—:—-}—(Syay (5-5— I(z,y,t)

Thus in the limit as ét — 0, we have
ol d:c ol dy ol

Bzdt oydt ot =0
1.e.
o0l 8] 8[

where u = %’f—, v = 5% This is called the optical flow constraint equation, image
brightness constraint, or gradient constraint, and is the basic formula for estimation

of optical flow [Horn81, Anandan89|]. The above equation can also be written as
(vD)Tu=-AI (4.2)

where VI = (%, %) is the spatial image gradient, and Al = '37 is the temporal

image intensity derivative of identical points in different frames.
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An important issue when using the basic constraint formula is its reliability.
Notice that the intensity conservation assumption implies that the image intensity
associated with the projection of a 3D point does not change as the object or the
camera moves. 'This assumption is only approximately true in real image sequences,
and ignores possible changes in intensity due to variation in illumination. For
example, Verri and Poggio [Verri89] have performed a careful study of the problem
considering various factors such as lighting, reflection and texture. Their conclusion
is that while the basic formula is a necessary and sufficient condition for optical
flow to be equal to the projection of 3D velocity onto the image plane, except in
a few special cases, the basic formula is not a reliable or accurate approximation.
S0, generally, estimates of motion and surface from optical flow are not reliable.
Fortunately, our aim is to register photos taken from a nearly fixed viewpoint, and
this special problem is one of the cases to which the optical flow method can be
reliably applied. The approach is also often referred as gradient-based registration

method.

The optical flow constraint equation provides only one equation but there are
two unknown variables v and v. So more constraints must be introduced to find
a general solution for optical flow. These extra constraints may be smoothness
constraints on optical flow or on image gradient [Horn81, Terzopoulos86, Nage87].
Under these smoothness assumptions, iterative schemes have been developed for
solving the problem. We omit discussion of these further constraints here. Instead,
we will see later that the basic constraint equation (4.1) is sufficient to solve our

particular problem of panorama image stitching. Nevertheless, most optical flow

methods are based on minimizing an error value
E, = //((VI)Tu—l- AI*dzdy, (4.3)

the total amount by which the basic formula is not satisfied, calculated over a
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suitable region across multiple images.

Note that in the above error measure, if the optical flow components u and v
can be represented as linear functions of some motion parameters which is true in
some particular cases, the error term is quadratic in terms of these parameters. In
such a case, a least-squares solution that leads to a linear system can be employed

to determine the parameter values.

4.2.3 Least Square Solution

Taking the above idea further, let us consider a particular transformation model
where the optical flow field is linear in terms of some motion parameters. We show
that this is indeed the case for pure camera rotation situations in Sections 4.3 and
4.4. Other general models are beyond the scope of this research. In this case, we

may write
u=g(x)d (4.4)

where g(x) is a coefficient matrix, saying how u varies with z and y and depends

on the parameters:

goo(X) ... Gon(X)
(x) = :
® g0 (X) -« Jin (X)

and d = (dy, dy, ...d,)? is the parameter vector.

In the above, the g;;(x) depends on pixel’s position and camera calibration
parameters, while the d; could be a motion parameter such as camera rotation
velocity or camera translation velocity, or a combination of motion and surface
parameter. We will introduce various ways of representing g¢;;(x) and d; for each
particular transformation model in the next two sections. Here the general repre-

sentation is used for obtaining a solution in general.
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Taking a pair of successive images to be one unit of time apart, we may denote

the error in intensity (i.e., amount by which the constraint equation is not satisfied)

at a point x to be
Al(x) = I(x +u;, t + 1) — I(x, t) (4.5)

Our objective is to minimize the total error in the optical constraint Equation(4.2)
over a suitable region of the image. Hence, the two images(portions) are aligned.
The integral in Equation (4.3) is now taken over summation over a suitable set of
pixels (z;,y;) € x. Hence

E(x) = Y ((v)Tu+ Al

X

Y (vD)Tg(x)d + AT)? (4.6)

X

I

should be minimized.

Minimizing the above error function with respect to d requires

O,
d;

0, ¢2=0..n
and hence
QZ(VI)T(QOOa g10) ((VI)g(x)d + AI) =0, i=0..n

Combining these equations we have

(Z gT(Vf)(VI)Tg) d=-) g’(Al(VI) (4.7)

We may solve this linear equation to find the motion between a pair of images
using an iterative refinement process. During each iteration, we warp the initial
image according to the current velocity estimate, then we recompute AJl(x) using

Equation (4.5), and update our incremental estimate of the parameter vector d.
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We then accordingly update the optical flow u, and recompute the error function

(4.6). This process continues until a suitably small error is achieved.

This least squares optimization gives us a simple and fast solution provided
that good initial values of the unknown parameters of motion are at hand and a

linear representation of motion in terms of some suitable parameters is available.

The key problem remains of how to represent optical flow in terms of motion
parameters. Section 4.3 and 4.4 discuss this problem from two different points of
view, one from the view of a moving camera imaging a planar surface, and the
other from the view of a planar perspective projection of a 3D scene. We show

that these are equivalent.

4.3 Planar Surface Rigid Motion

In this section, we review the equations describing the relationship between motion
and optical flow in the case of a planar surface undergoing rigid motion. We
give both an 8-parameter general model and a more specific 3-parameter model
[Bergen92, SzelS97]. When imaging a 3D scene from a fixed viewpoint, rotating
the camera imaging a 3D scene is equivalent to imaging a rotating planar surface

in 3D space. Thus, this particular case of planar surface motion is relevant to our

panorama building problem.

4.3.1 8-parameter General Model

We begin with a general description of a 3D point motion, then to the particular
case of planar surface motion. The derivations are referenced from [Horn86|, we

present them here to compare with another derivation later. Suppose we have a
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moving camera in a static environment, with a viewer-centered coordinate frame
fixed with respect to the camera, with its Z-axis pointing along the optical axis
(see Figure 4.1). The instantaneous velocity of the camera can be expressed in
terms of two components, a 3D translation t = (tz, ty, )7 and a 3D rotation
W = (ws, wy, w;)" about an axis through the origin. Let P = (X,Y, Z)7T be the
3D position vector of an object point P. Given this motion of the camera, the

instantaneous 3D velocity of surface point P is
V=-t-—wxP.
We denote the velocity by

0X oY 07,

V= (2= = =
(at’ ot’ ot

We can rewrite the equation in component form as
X = ~ty — Wy Z + w,Y,

Y = ~t, — w, X +w,Z,
7 = —t, — wzY +w,X.

The 3D velocities of every surface point in a stationary scene depend on the same

rigid body motion parameters given by the above equation.

Each image point p is a perspective projection of a corresponding surface point

P, with coordinates given by

oo X
=/

Y
y“f?~

Here f is the focal length of the projection, i.e., the distance from the camera

center to the image center (see Figure 4.1, where it is oc). The derivative of p gives
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P(X,Y, 2)

Figure 4.1: Planar Projection

the image velocity or optical flow
. X Xz
v=2=fl7 -7
| Y YZ
v=9=fl7~ 7).

Substituting for the derivatives of X, Y, and Z yields

— [ty + xt,
u=—1 = T wa(ay/f) —wy(f +2°/f) + w.,
— Ity + yt,
v = ! yZ Tz we(f +¥°/f) — w,(zy/f) — w,.
Rewriting the above equations in matrix form we obtain
1
u(x) = —Z——(;C—)—A(x)t + B(x)w

where Z(x) is the depth of the image point x = (z,y)? , and

A(x)=(“f ’ “"’)
0 —f vy

89

(4.8)
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(ey)/f  —(f+2)/f y
(F+y)/f  —@y/f -
The matrices A(x) and B(x) depend on the image position and the focal length.

B(x) = (4.9)

Equation (4.8) shows that optical flow is determined both by the camera motion
and 3D object surface geometry. The first term is the translational component of
the flow field; it depends on the 3D translation and 3D depth. The second term is

the rotational component and depends only on the 3D rotation.

Note here that u(x) depends at each point on six unknown motion parame-
ters (tz,ty,t,, Wy, Wy, w,) and an unknown surface Z(x). Thus there are far fewer
equations than unknowns. To obtain a solution for camera motion, more assump-
tions must be made; these are (i) optical flow changes smoothly across the image,
and (ii) the object surface is smooth. Under these constraints, a solution to the
problem can be found by solving a set of non-linear and over-determined equations
[Horn81, Terzopoulos86, Nage87, Tretiak84]. A general solution is hard to obtain,
but a solution can more readily be found in some special cases such as pure camera
translation or a moving 3D planar surface. A detailed discussion of these issues is
beyond the scope of this thesis. However, in particular, we are interested only the

planar surface case in the application of stitching panorama mosaics.

The equation for a 3D planar surface is
ki X + kY + ksZ = 1.

Dividing throughout by Z gives

1 z
'Z :k1?+k2‘.:]'y‘,‘+k3

Substituting this into equation (4.8), we have

u(x) =J,a (4.10)
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where

1 2
Ta(x) = z y 00 0 z¢ =zy

0 001z vy zy v?

and a = (ag, a1, ay, as, aa, as, ag, a7)? are the combined motion and surface param-

eters to determine.

Now we can say that, for rigid motion of a planar surface, the optical flow is
linearly represented by 8 unknown parameters in a quadratic function of image
position of the form in Equation (4.4). A least square solution can be applied

directly to the problem by solving Equation (4.7).

Next we consider a less general situation, the pure camera rotation case. We
will show that the problem can be reduced to a 3-parameter model with a linear

solution.

4.3.2 3-parameter Rotation Model

We now discuss the case assuming that panorama mosaicing is performed from a
fixed viewpoint, in which the motion of the camera is undergoing a pure rotation,

i.e., panning, tilting and rolling. In this case, the translation vector t is zero and

equation (4.8) simplifies to
u(x) = B(x)w. (4.11)

As noted earlier, the resulting optical flow depends only on the camera rotation
speed, and is independent of scene depth. From Equation (4.9), the coefficient
matrix B(x) is determined by image position and focal length. Thus, if the focal
length is known, the optical flow components are linearly represented by 3 rotation
parameters (w;, Wy, w,). Again we may apply a least squares method to the prob-

lem by substituting Equations (4.11) and (4.9) into Equation (4.7), which leads to
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the linear systems below:

(Z BT(VI)(VI)TB) w=—Y BT (AI)(VI).

As the solution here only involves three rotation parameters, it is a 3-parameter
model for aligning images under a pure camera rotation. Because this model has
fewer parameters, it converges more quickly to a solution, and is less apt to be
trapped in local minimum and thus more stable compared to the 8-parameter

model.

In the above we have reviewed the derivation of the 8 and 3- parameter models
from the point of a planar surface under rigid motion. Next we present a new
derivation that shows the same results can be obtained from a different point of
view, 1.e. planar perspective projection of 3D scene. This way of derivation can

lead to a new solution of 5-parameter model.

4.4 Planar Perspective Projection

We know that imaging rigid motions of a planar surface is equivalent to imaging
varying planar perspective projections of a 3D scene, and can be done using an
8-parameter homogeneous transformation [McMillan95]. In constructing a full-
view panorama, we assume that the photographs are taken from an approximately
fixed viewpoint, so the relation between adjacent images is approximately a planar
perspective transformation. The matrix parameters of this transformation are
those needed for building up the panorama. In this section, we show that the 8- and
3- parameter models can also be derived assuming the transformation corresponds
to a planar perspective transformation, which is a different starting point from

previous section. From this perspective view, we further propose a new 5-parameter
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model for solving the problem.

4.4.1 8-parameter General Model

Any two images I'(x) and I(x), which are planar perspective projections of a scene

from a common viewpoint, are related by a 2D homogeneous transform x’ o< Mx,

l.e.

y | x| my

where o indicates proportionality.

brought I and I' nearly into correspondence, then M is not too far from an identity

/x’\ /mx\ (mo

N1 Am )\ me

If we

(A mg\
my  Ms

m71)

assume that coarse registration has

matrix, and it is convenient to write it in the form

M=1+D=

giving

!

r =

!

y::

(1+%
ds
\

d;
1+ dy4
d7

/37\

Yy

dy )

ds

\ 1)

L)

(1 - do)x -+ dly ~+ dg

d6$ + d7y +1

3

(1 + dgl‘) -+ d4y + d5

dex +d7y + 1

Thus we may obtain the optical flow as

'U:y'--y::

L= d().’L’ -+ dly -+ d2 — d6x2 - d733y

dsl‘ + d7’y + 1

7

d3.’,13 -+ d4y + d5 — ds.'L'y — d7'y2

d633+ d7y + 1
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Now, dg and d; in the denominator of the above formula contribute to perspective
distortion, and they can be neglected when the transform matrix is nearly an

identity matrix. This gives

U = dox -+ dly + d2 — ds.’L'z — d733y,

v = dsz + dyy + dy — dezy — dry?,

which we may rewrite as

u(x) = Jq(x)d (4.12)
where
T 1 000 —2° -z
Jax)=| © 7 ! (4.13)
000z vy 1 —zy —y°
and

d= (d07 dla d27 d3) d47 d57 d67 dT)T'

Substituting these into equation (4.7) yields the linear equation
(Z JdT(VI) (V.[)TJd) d=— Z JdT(AI)(VI)

This equation is actually the same formula as derived for the 8-parameter model
in Section 4.3.1. Thus, we have derived the same 8-parameter model both by

considering a rigid moving plane and a planar perspective transformation.

This 8-parameter model can be further simplified to use less parameters in the

transformation matrix when the camera is under going a pure rotation, as we show

next.
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4.4.2 3-parameter Camera Rotation Model

When the pictures are taken from a fixed viewpoint, the transformation only in-
volves camera panning, tilting, rolling and zooming. If we keep the same focal

length, the transformation matrix may be written as (see Section 3.5.1)
M=V -R(6,,6,0,) V! (4.14)

When M is nearly an identity matrix, we have a small rotation. As |§] < 1, we
may approximate sinf) ~ 8, cos§ =~ 1. Thus, Equation(4.14) may be approximated

by (see Section 3.5.3)

(1 —6, 6 )
M =~ g, 1 —6,f |- (4.15)

\ -——Hy/f gsc/f 1 )

From 2’ «« Mz, we have

, =0y +0,f
_ny/f + 0,y/ f + 1’

y/: Hzx+y—8$f
—byz/f +0:y/f +1

We thus obtain the optical flow equation

= —0,y + Hyf T Hwa/f - gmxy/f

X

=T —0,z/f +6gy/f +1
’U=y'——y:: gzx“gmf+9yxy/f"9my2/f
—0yz/f +0y/f +1

Again, for a near identity transformation, 8, and 6, are small relative to f, so the

6./ f and 6,/ f in the denominators of the above formulae may be neglected, giving
u=—0,y+06,f+0,7°)f — O,zy/f

v =0,z —0,f +0,2y/f — 607/ f
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This can be written as

u(x) = Bq(x)0 (4.16)
where
By [ W U2 e
-(f+9*/f) zy/f x
and

6 = (6,,6,,0,)7.

Assuming that the focal length is known, the optical flow is described as a lin-
ear combination of three unknown rotation parameters. To apply a least squares

method, we substitute the above optical flow into Equation (4.7), giving

(}: BdT(vI)(vI)TBd) 6=-Y By (AI)(VI).

We observe that this 3-parameter solution actually has the same form as that in

Section 4.3.2.

We have now given the derivation of both 8- and 3- parameter solutions start-
ing from either imaging a moving planar surface or a varying planar perspective
projection of a 3D scene. These all assume a perspective transformation which
is only true when the viewing-position is absolutely fixed in the planar perspec-
tive projection model, or the surface is absolutely planar in the moving planar
surface model. But in real applications of imaging a panorama of a 3D scene,
small movements of camera position are hard to prevent. When the viewpoint is
not absolutely fixed, theoretically, neither the 8- nor the 3- parameter model is
correct, but we can still use them as approximations. When camera translation
is small enough in imaging a 3D scene (or equivalently, the surface under motion

is near planar), these models are good enough approximations to accommodate
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image registration. The quality of the final results depends largely on how close
the initial values provided by coarse registration are to the correct solution. We
have observed that the 8-parameter model sometimes induces apparent unwanted
distortions, while the 3-parameter model induces blurring. These occur due to
errors 1n initial estimate of focal length and some jitter in viewpoint position. In

order to remedy such problems, we propose a 5-parameter model next.

4.4.3 S-parameter Camera Rotation Model

We notice in the 3-parameter model that the focal length is assumed to be known.
If errors may exist in the value of focal length used, more parameters are needed
to allow the focal length to be estimated, too. Let us return to the transformation
matrix for camera rotation in Equation (4.15). There are now four unknowns f,

0, 6,, and 8,. To produce a linear representation, we write the incremental matrix

in Equation (4.15) using 5 parameters as follows:

/1 COCI\

M = —Cp 1 Co . (418)

\Cg c41/

Thus
f__x+%y+q
ez ey + 17
;  —CIT YT C
4 csT + ey + 17
giving the optical flow equation
, ColY + €1 — C3T° — C4TY
U=r —r = :
c3T + cqgy + 1
: —Co + €3 — C3TY ~ C4Y°
v=y —y= :

c3x + cqy + 1
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Because c3 and ¢4 in the denominator are actually 0;/f and 6,/f in Equation

(4.15), we again omit them assuming the angle of rotation to be small, giving

/Co\

1 0 —g? -
Y -z —TY

H(X) = Co
-z 0 1 —zy —9?

C3

= f.c.

The corresponding least squares equation is

(Z fT(vI)(vI)Tf) c=-Y fI(AI)(VI).

Iterative solution of this 5-parameter model converges faster than the 8-parameter
model, but more slowly than the 3-parameter model. It generally provides visually
more satisfactory results than either the 3- or 8-parameter solution. Test results

and further discussions of each model are given in the next section.

4.5 Discussion and Test Results

In an ideal situation, when there is no translation of the viewpoint and initial
estimates of the transformation provided by coarse registration are close enough, all
of these models can work well theoretically. The 3-parameter model gives a perfect
solution with the fastest speed, and is more robust since it has fewer unknowns; the
8-parameter model generally works well although it converges much more slowly
and sometimes gets stuck in local minima, since it contains more free parameters

than necessary. The 5-parameter model is somewhere in between in terms of speed

and quality.
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However, when the viewpoint position is not absolutely fixed and the estimate
of focal length is not so accurate, the 3-parameter model often does not register
adjacent images perfectly, and some blurring results. While the 8-parameter model
can finely register each pixel in the overlap area, often the transformation found is

not what we expect, producing unwanted distortions in the non-overlapping region

of each image.

In acquisition of the pictures, we assume the user has made a considerable
effort to keep a fixed position and only rotate the camera. Therefore, there is
mainly a rotation constraint between the pictures thus taken. Moreover, when
there are errors in both viewpoint position and coarse registration caused by er-
ror in focal length estimation, the 8-parameter model tries to align the images
however it can using all its free parameters, and produces unwanted distortions
outside the overlap region by deviating too much from the camera rotation con-
straint. The 5-parameter model overcomes this problem by correcting the focal
length while still keeping the rotation constraints, and so provides better results.
For the 3-parameter model, there is no way to correct focal length errors, which
causes the blurring. We should point out again that all these models are merely

approximations when the viewpoint is not absolutely fixed.

Examples are shown in Figures 4.2, 4.3, 4.4 and 4.5. Figure 4.2 gives two
original images. Figure 4.3 is the registration result given by the 3-parameter
model. We may observe that there is still some parallax causing blurring at the
bottom edge of the desk. Results of using the 8-parameter model are shown in
Figure 4.4. We can see that the images are finely registered in the overlap region,
but outside this region the second image is skewed inwards—see the right-hand

edge. Figure 4.5 is the result of using our new 5-parameter model, which is both

finely registered and has less skew.
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Figure 4.2: Original images for registration

o

Figure 4.3: Registration using a 3-parameter model. Note blurring at the bottom edge of the
desk.
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Figure 4.4: Registration using an 8-parameter model. Note skewing at the right edge.
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Figure 4.5: Registration using 5-parameter model. There is less blurring and skewing.
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There is a problem in the one step linear solution of the 8-parameter model,
where we just use four corresponding points to compute a 2D homogeneous trans-
formation matrix directly. The result is sometimes not good even when using
synthetic images taken from an absolutely fixed viewpoint. This suggests that
errors in the feature location and that these errors are magnified outside the over-
lap region by the excessive freedom of the model, and hence the method is apt
to be ill-conditioned when only a few correspondences are used. An example is
shown in Figure 4.6, where the one step solution given by the 8-parameter per-
spective transformation matrix is illustrated. The four corresponding points are
shown connected by red lines. The two pictures are synthetic images with a pure
panning of about 30°. We can see that pixels near the four points used to find the

correspondence are well registered, but most other pixels further away are not.

Another important issue is over what range of a displacement of pixels between
the two images the methods described here still work. The next section gives a

discussion of this problem.

4.6 Registration for Large Displacement

The above optical flow based iterative schemes for image registration require that a
reasonably good initial alignment must already be known. These methods assume
smoothness of objects, uniformity of displacement, and small differences between
images. When these conditions are satisfied, they can recover transformations
corresponding to a range of a few pixels displacement only. For recovering trans-
formations corresponding to large displacements, a common practice is to perform
a hierarchical coarse-fine refinement [Bergen92, SzelS97|. Here we give an alter-

native way to enlarge the range of displacement for which transformation can be
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Figure 4.6: Registration by four tie-points with the 8-parameter model
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successfully computed. Note that the methods are used to estimate gradient from
a discrete image sequence. Our approach is to apply a Gaussian derivative filter
before computing the image gradient. Using a larger deviation factor in the Gaus-
sian filter allows recovery over arbitrarily larger pixel displacements. Although
smoothing is often used to improve the performance of optical flow methods, a
quantified analysis of the relationship between the smoothing factor and displace-
ment it 1s possible to recover is not seen in the literature. We perform such an

analysis here. We first demonstrate the idea theoretically.

For simplicity, we assume the image displacement is only in the z direction. Ap-
plying a first order Taylor series expansion and a least-squares solution to estimate

the translational increment ¢, we have

/ / (I'(x + 6) — I(x))2dzdy ~ / / (A + (9.0)6)2dsdy  (4.19)

where Al = I'(x') — I(x), and x’ is the displaced image. V. is the x derivative

of the image. Min1m1zmg the objective function (4.19) with respect to ¢ leads to

(//X(fo)gdxdy) 0 = —//X(AI)(le)da:dy. (4.20)
== / /x (AL (V. I)dzdy, (4.21)

B _f [ (AL)(VI)dzdy
[ [ (V3I)2dzdy

where ¢ = [ [ (V,I)?dzdy is a constant for a given image.

the equation

Denoting

we can write

= g/c (4.22)

We will show next that g is a function of displacement distance, and can indicate
the amount of displacement when it is within (—40,40), where o is standard

Gaussian deviation, assuming Gaussian smoothing has been applied first.
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Figure 4.7: A line moving in a picture from zq¢ to x1; h is the line height (number of pixels on
the line).
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Figure 4.8: Image after Gaussian smoothing; o is deviation
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Figure 4.9: z-derivative of Gaussian smoothed image; o is deviation

Suppose there is only one line in image I (x). The line’s motion in the z direction

is imaged in I'(x). See Figure 4.7. We assume that
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g= haGafszll—mo) * Gy (z1)
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Figure 4.10: Motion indicator g

,
1 itz = x4
I(x) = J
\O otherwise
and
.
1 ifzx= Z
I'(x) = <
0 if else

\

First we consider an unsmoothed case:
If the two images are unsmoothed as in Figure 4.7, the optical flow formula can
not be applied directly. In another words, g in Equation (4.22) does not indicate a
meaningful moving direction if applied naively to this case without prior smooth-
ing. As we have used a Taylor expansion to obtain the basic formula for optical

flow, this requires the image brightness to be differentiable. If we overlook this

condition in discretely sampled images, it may cause a problem.

Since we assume that there is only motion in the x direction only, the gradient
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can be calculated by

r

1 if z =z,

Vel =I(z,y) - Iz —1,y) = { _1 ifr=xz9+1

\

0 otherwise

whereas (
-1 if x = zg, and z; # xy
AI:I'(CI?,%/)—I(IE,?J)=<1 if x =z, and z; # x9
k0 otherwise
giving
(O if x1 = xg

f / (VoIADdzdy = { —oh it 3, = 2 + 1

\

—h  otherwise

Here A is the number of pixels on the line. From Equation (4.21), we have g > 0

for any z;. That is, the sign of g does not alter when z, is either to the right or left

of zy. Hence, no information is given about the direction of motion by g, i.e. the

displacement can not be registered, in this case when the image is not smoothed.

Now we examine the smoothed case:

Let us smooth the image using a Gaussian filter:

z

Gy(z) = e 27,

Its first order z derivative is

8Gg($) z z2

= ——e 7,
M g

The smoothed image G,(x) = I(z) and its derivative

0Gs(x) :
—== % I(z) are shown in
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Figures 4.8 and 4.9. We have

0G,(z
VeloAl, = D 10)(Gy(a) ¢ I(a) - Gola) # ')
0G,(z — x¢)
= 5 (Go(z — 20) — Golz — 31)).
T—T L—1 —-——79—(”"” ”
Note that laG"gm ) | = }7% = | has a value small enough for z < zg — 20

and z > o+ 20, which may be approximated by zero. Thus, Equation (4.21) now

becomes
h To+20
g = / / ~Vl, Al dxdy
0 To—20
To+20 oG (.’II ""xO) Zo+20 oG (SL' — )
= —h ? Gy (2 — e — 1) dz.
/x s (o -adsth | 2O TG (o )i

Consider the first term:

To+20 ____
/ 9Go(z xO)Ga(a: — z0)dz

{

0—20 833 0—20 0-2
Zo+20 .. 2z )2
_ */ T 2$oe_£.__;20_)_ .
To—20 o
To+20 (z—zq)2
- (e~ ") dz
To—20
— ()’
and so
2020 3Gy (z — ) 0G,(z1 — 7o)
_ o Ga _ dr = h g o 4.23
g h/wo_% 5 (z — x1)dx oz, * Gy (21) ( )

Notice here that zy is a constant and z; is a variable indicating amount of dis-

placement. The above ¢ is a convolution of aG"gill"“O) with G,(x1), or a Gaus-
sian smoothing of a derivative Gaussian curve. Note that the derivative Gaussian
aG"g’fEll"xO) is effectively non-zero only in the range z; € (zq — 20, g + 20), which
now is extended further left of 20 and further right of 2¢ by the smoothing func-

tion G,(z1). So g is effectively non-zero for z, € (zy — 40, zy + 40), as can be seen
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in Figure 4.10. In another word, when the line in I’ (x) is moved 40 away from
where it is in I(x), g equals zero and thus from Equation (4.22) that no motion
information is available. It shows that theoretically the optical low based method
can recover motion direction within +4¢ for the simple translational case. Hence,

using a large smoothing factor o can register large displacement.

Thus, from this simple translational example we see that the displacement
direction can be recovered within the range of § = +4¢ when we take g =
— f fx(AIG)(VmIa)da:dy. Similarly, the recovery range is § = +2¢ if only a deriva-
tive smoothing filter is applied but no smoothing of the raw images is performed,
that is when g = — [ [ (AI)(V,I,)dzdy. Thus, instead of using a coarse-fine hi-
erarchical estimation framework, this suggests a simple but effective approach to
enlarging the range of displacements for which optical flow methods can be made
to work, 1.e., by using a sufficiently large scale derivative filter. This strategy works
well for our problem of panorama mosaicking, especially if, as is the case, there
are no differences in occlusion between the photographs (because they are taken
from a fixed viewpoint). So by simply taking a large filter deviation we may let
the major image structures determine the registration. However, the scale of the
deviation should not be overly large to result in a poor resolution. We have tested
this strategy on a variety of images and obtained good results. As pictures used

for panorama building often have relatively small overlap, the speed is reasonably
fast.

An illustration of fine registration is shown in Figure 4.11. The displacement

is about 16 pixels in (a). Here we take o = 2.5. After 12 rounds of iterative

refinement, registration converges to the result shown in (b).

Another benefit of using a large deviation filter is that it makes optical flow

methods more reliable. Notice that the gradient constraint relies on two approxi-
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(a) Initial coarse registration. The displacement is about 16 pixels.

(b) Result of fine registration with o = 2.5.

Figure 4.11: Registration of large parallax
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mations. One is the image intensity conservation assumption, and the other is the
numerical accuracy of the discrete approximation of spatio-temporal first order
derivatives. In practice, both assumptions are often only approximately satisfied.
However, with appropriate filtering of the raw images one may satisfy the con-
servation approximation more closely and also improve the accuracy of numerical
differentiation. This is particularly important when illumination differences are
present. See the example in Figure 4.12. The raw images have considerable light-
ing differences in the overlap region, see in (a). The displacement is about 12
pixels in (b). We use a deviation ¢ = 5. After 16 rounds of iterative refinement,

registration converges to the result shown in (c).

4.7 Summary

In theory, only images taken by a camera whose optical center is fixed can be
stitched together to produce a panorama with the gradient based registration
method described in this Chapter. In practice, when the amount of camera trans-
lation is relatively small, the transformations can still be approximated by planar
surface motions or perspective transformations. We have shown, starting from
these two points of view, the way to linearly express optical flow in terms of model
parameters, allowing the latter to be determined using a least squares method.
Tests have been conducted on existing 8- and 3-parameter models as well as our
new 5-parameter model on images taken with a handheld camera. The proposed
5-parameter model is shown to produce the best quality results. We have also
analyzed how the use of a Gaussian filter can be effective in aligning images with
large displacement, provided that there are major image structures present in the

overlap region and no occlusion present, which is the case for panorama mosaics
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(b) The coarse alignment. The displacement is about 12 pixels.

(c) Result of fine registration with o = 5.0.

Figure 4.12: Registration with big lighting differences and large displacement.
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taken from a single viewpoint.

The gradient-based registration approach presented in this chapter serves as
the fine registration step in our system of building a panorama from images taken

with a handheld camera.
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Chapter 5

Panorama Building and Tidying

Having registered individual images pairwise, we now need to stitch them together
to form a complete cylindrical or spherical panorama. In this chapter, we describe
how to build up such a panoramic image by applying the appropriate warping and
merging operations to the overlapping adjacent images. We also describe methods
for tidying the panoramic image to correct various artifacts resulting from pairwise
registration. We focus on the construction and tidying of cylindrical panoramas,

and briefly introduce building of spherical panoramas.

5.1 Overview

In building a single viewpoint panorama, a cylindrical model is generally preferred
because of its ease of construction, and because it can represent the information
about the environment of most interest. The problem of constructing a cylindrical

panorama after the adjacent images having been pairwise registered can be stated

as follows (the spherical panorama problem is similar).

115
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Given a sequence of images taken from a nearly fixed viewpoint and the relative
transformation matrices between them, we want to construct a single cylindrical
panoramic image covering a closed horizontal strip of a visible area of a scene.
This cylindrical image is used as a texture which is mapped onto a cylinder model
centered at the viewpoint, and having a radius equal to the camera focal length.
Based on this model, a 3D viewer can be constructed which allows the user to pan

around, tilt up and down, and zoom in and out, to view the scene.

The technical difficulties in constructing a. cylindrical panoramic image are:

e Due to the presence of tilting rotations, image planes are usually not tangent
to the cylinder being mapped onto. This makes the wrapping of images onto

the cylinder surface more complicated than in the pure panning case.

e An incorrectly estimated focal length will result in an end gap or overlap
when the panoramic image is wrapped onto the cylinder. Measures must be

taken to seamlessly close up such an end mismatch.

e The presence of unwanted tilting and rolling in the first image will form a

strip on the cylinder in the form of a sine curve, or helix respectively, which

should be corrected accordingly.

e Intensity or other differences may exist in irregular shaped overlap regions

between adjacent images. These must be smoothed out to achieve a good

visual effect.

Previous work on panorama building does not appear to have considered tilting
during the warping operation, nor tilting and rolling of the initial image [SzelS97,
Shum00, Bao99, Xiong98|. Focal length correction to close the end gap or overlap
is simply a stretching or shortening of the composited panorama in one direction

[SzelS97, Kang99]. We overcome all these shortcomings in our approach.
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To perform a cylinder mapping, firstly, aligned images are projected onto planes
tangential to a viewing cylinder; secondly, these projected images are wrapped onto

the cylindrical surface.

To smooth out intensity differences between adjacent images where they over-
lap, we interpolate the intensity of each pixel linearly from the two contributing

1mages according to the pixel’s distance from the borders of the overlapping region.

In practice, sampling of images and blending are performed only once at the
last stage after the other final corrections mentioned above have been done, as

described in Section 5.3.

The rest of this chapter is organized as follows. In Section 5.2, we describe
wrapping images onto the cylindrical panorama. Section 5.3 discusses tidying
of cylindrical panoramas. Spherical panorama construction is presented in Sec-

tion 5.4. Section 5.5 summarises the chapter.

5.2 Cylindrical Panoramas

In this section, we formulate the transformations needed for building a cylindrical
panorama from the images. To begin with, we show how to determine projection
matrices from pairwise registration matrices and the size of the cylindrical map;

and specifically, we consider the presence of tilting.

5.2.1 Warping to Tangent Planes

To perform cylinder wrapping, we must first warp the images to planes tangential

to the viewing cylinder: see Figure 5.1. Using the automatic registration techniques
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N

Figure 5.1: Warping an image onto a plane tangential to the viewing cylinder .

in Chapters 3 and 4, we can find a set of matrices !, My, My, ..., M,,, that relate
each pair of adjacent images in a 360° panoramic mosaic sequence. Thus, images

n the sequence Iy, I, ...I, are related by

Liyn=M;-I;, 1=0,1,...,n, (indices mod n). (5.1)

The cylindrical panorama model is centered at the viewpoint and has a radius
equal to the focal length f. We project each image separately to a plane that is
tangential to the cylinder. Let the warped images be Iw,, Iw,, ..., Iw,. Let the

inverse warping matrices be My, Mw,, ..., My, , defined by
Ii — MWi . IWZ., (IES O, 1, ooy T0. (52)

Note that the inverses, rather than the warping matrices themselves, are used to

find each final pixel by sampling.

Let Py, Py, ---Pu,, be the matrices relating two adjacent tangent planes, so
IW'i+1 = PMi . ‘[Wz" 1= O, 1, ceey TV ( indices mod n) (53)

Since there is only a pure panning between adjacent tangent planes, Py, is deter-

mined by a panning angle ¢; and the focal length f.

This panning angle ¢; is an approximation of the panning rotation of the it

image in the sequence. We estimate this value from the motion of center points of

1The subscripts here have a different meaning to those in Equation (3.9).
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consecutive images. To do this, ¢;, we project the origin of the second image I;,;
into the plane of the first image, giving the point (z,, yo,):
(0, 90, 1) = M- (0,0,1)".
We then project (zo,, yo,) into its warped image Iy, giving the point (Zy,, Yuw,):
(Tuor Yo, )T 0 My - (30,590, 1)
= My, - M;7-(0,0,1)7, (5.4)

(here oc means equal up to a scale factor). Finally, the panning angle is given by

¢z‘ — arCtan(xwo/f)

and the panning matrix relative to the previous image is, from Equation (4.14),
PM,- :V;"Rpi "/i—la

where
( cos¢; 0 sing; \
Rp, = 0 1 0

\ —sin d; 0 cos o, /

Combining Equations (5.1), (5.2) and (5.3) yields

Liyn = M;-I;

M; - MWi | P]\—/-I,1 | IWi+17
and thus
Mw,,, = M; - M, -P];Iil. (5.5)

Assuming that the first warping matrix My, is an identity matrix which means
that the first image has no tilt or roll , (but see later in sections 5.3.1 and 5.3.2),

each of the warping matrices can be obtained by applying Equation (5.5).
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5.2.2 Wrapping the Images onto the Cylinder

The above matrices are used to calculate the size of the cylindrical image which is
obtained by mapping images onto the cylinder and unwrapping it. The cylindrical
image is formed by resampling the original images. Denote the output cylindrical
image by C. For each pixel (z.,3.) € C, we compute the corresponding position
(Tw, Yw) in the warped image Iyy,, and hence the source pixel (z,y) to be sampled

from the ** image I;, as follows:

T, = f-tan(fffx
. Ye
T cos(@e/f)’
(z,y,1)T « Mw,  (Zw, Yu, 1)7. (5.6)

5.3 Cylindrical Panorama Tidying

Simply producing a panorama using the above steps results in a cylindrical image
with various defects, and these must be corrected to obtain a better final result.
Note that, in principle, these problems could be avoided by treating registration
of all images simultaneously as a global problem. A global method of alignment
for end closing is suggested in [Shum00|, but in the objective function used there,
the starting and end frames are not explicitly fixed and isolated from the in-
between frames so as to impose a closing constraint. In practice, computing a
global solution is computationally expensive, and we take a simpler approach to

resolving the deficiencies in closing of panoramas constructed using our pairwise

registration techniques.
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Figure 5.2: Initial tilt correction.

5.3.1 Initial Tilt Correction

At the end of Section 5.2.1, we assumed that the initial warping matrix was an
identity matrix. In practice, the first image may be slightly tilted and rolled with
respect to the axis of the cylinder. Because of the way the pictures are taken,
tilting is likely to be larger than rolling—often there are horizontal reference lines

in the scene like the horizon.

In this subsection we consider correction of an initial tilt, and in the next

subsection, the effect of an initial roll.

A tilt of the initial image in the sequence will cause the panorama image to
change its height on the cylinder as we go around the cylinder, becoming highest
half way around (see an example in next chapter Figure 6.8(a)). The result is
similar to projection of the images onto an inclined cylinder. The tangent of the
initial tilt angle can be estimated by computing the difference in height of the bases
of the wrapped images at the start and half way round the cylindrical image, and

dividing by the diameter of the cylinder: (see Figure 5.2). Thus

h
0, = arctan —

2f
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S~

\

Figure 5.3: Initial roll correction.

5.3.2 Initial Roll Correction

If there is a roll in the orientation of the initial image, then, ignoring any other
sources of error, the panorama image will form a helical strip on the cylinder rather
than a horizontal strip. By calculating the vertical offset between the initial image
and the last image, and dividing by the circumference of the cylinder, we can

obtain an estimate for the tangent of the initial roll, ( see Figure 5.3), giving

4. = arct d
0 g27rf'

Substituting these two angles into the rotation matrix, a new matrix allowing
for the initial tilt and initial roll corrections computed above can be constructed.

Replacing the identity matrix My, by this new matrix, a more accurate result can

be obtained.
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9.3.3 Focal Length Correction

Due to errors in focal length estimation and accumulated errors in estimated pan-
ning angles between adjacent images, there is usually a mismatch between last and
first images when one tries to close up a complete panoramic sequence of aligned
images. In the ideal case, the product of the matrices relating adjacent images in
a cylindrical image sequence should be an identity matrix, and the total length of
the composite image should equal the circumference of the viewing cylinder, with
radius equal to the focal length. In other words, when sequentially projecting the
1mages onto the surface of the cylindrical model, the transformation relating the
last image in the circular sequence to the first image should leave the trailing edge
of the last image exactly adjacent to the leading edge of the first image. Imposing
these global closing constraints involves solution of a complicated non-linear prob-
lem which does not in general have a closed form of solution. Instead, we propose

to solve the problem in a simpler way based on an observation next.

Note that an error in estimated focal length will make the panning angles
obtained from the optimization process deviate from the correct value, and result

in an end gap or overlap in the composited panorama image. We analyze this

effect below.

Focal Length and Panning Angle Error Analysis

For simplicity, we only consider a horizontal line through the center of each image
of a pair of adjacent images. See Figure 5.4, where p is the intersection point of
the two lines, O is the viewing center, and 0, and o, are the centers of the images,
respectively. Let fo be the true focal length; suppose we incorrectly overestimate

it by an amount Af. To keep the intersection point unchanged both image planes
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Figure 5.4: Effect of focal length error on panning angle.

should be moved backwards as shown by the dashed lines. Here o] and p’ are new

positions of o; and p.

Let ojp = ¢. Then o}p’ is also ¢. Assume [y = Zoyop is half the correct

panning angle and S is the value estimated from the incorrectly estimated focal

length. Since

cotanf = Jot+4J

c

and
cotanfBy = f_o_’

C

we have
cotanf = f—g + ﬁ
c c
A
= cotanfy + ?f

Thus

A
B = cotan"'(cotanfy + -—Ci)

The graph of this function is shown in Figure 5.5.
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Figure 5.5: Variation of panning angle with respect to focal length error.

Notice that when Af/c is small, using a Taylor series expansion, we can ap-

proximately write

1 Af
/BN/BO“SingﬁO c
thus giving
ApB 1
= - , 5.7
Af CSiIl2 ﬁo ( )

From Equation (5.7) and

Figure 5.5, we see that the error in panning angle varies approximately linearly
with focal length error when this error is small. Such errors are accumulated from
each image in the circular sequence, and is the main cause of the end mismatch

(gap or overlap) in the composited cylindrical image.

We have done experiments to test the effects of focal length error on estimated
panning angle produced by our optimization procedure, using four pairs of corre-
sponding points as shown in Figure 5.6. Assuming the panning angle between
the images is 60°, and that each image has the same viewing angle of 90°, we let
the corresponding points be the projections of the object points A, B, C, and
D. Then, a = (ftan15°,0) & o' = (—f,0), b = (f,0) & b = (—ftan15°,0),
¢ = (ftan30°,100) < ¢ = (—ftan30°100) and d = (ftan30°,—100) < d' =
(—f tan 30°, —100) (image points for C and D are not shown). We let Af vary
between (—50, 50) given focal lengths of 150, 200, 250 and 300 respectively. Using
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the optimization Equation (3.14), we obtain four graphs of the estimated panning
angle as shown in Figure 5.7. (When |A f| exceeds 50, an unrealistically large error

for f in the above range, the optimization procedure does not always converge.)

Figure 5.7 shows that the panning angle error is nearly linear with respect to
changes in focal length, as predicted, even when the error in focal length is quite
large relative to the focal length itself. The optimization procedure compensates
for the error in focal length by producing an error in panning angle. Successive
errors between each pair of adjacent frames are accumulated, resulting in a large

error of composition length while pairwise registration still looks good.

The above error analysis is used to determine how to carry out focal length

correction as described next.

Figure 5.6: Image points corresponding to object points A, B, C and D.
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Figure 5.7: Panning angles resulting from optimization in the presence of focal length errors.

Correction—Gap Closing

As shown above, our registration algorithm can give a result that still looks fine
even when a considerable error of focal length is present, while this error may
result in a relatively large error in end matching. In other words, the overall
length of the composite image is much more sensitive to focal length error than
pairwise registration errors between adjacent images. Thus, we use the determined

composition length to refine the focal length, while keeping the local registration.

Let L be the length of the composite panorama. The viewing cylinder has a
radius L/(27), which should be equal to the focal length. The focal length obtained
from f' = L/(2w) is in general different from the value f estimated in Chapter 3.

Thus, we replace the focal length f by f'.

In turn, the panning angles between pairs of adjacent images need to be updated
accordingly, so that the overlap region between any two aligned images remains
unchanged. We iteratively re-estimate the focal length and consequently update
the panning angles several times until convergence is obtained. This procedure
closes any horizontal gap or overlap between the last and first images caused by

mis-estimation of focal length. Details of the process are as follows.

See Figure 5.8 showing a pair of adjacent images. Let O be the viewpoint,
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Figure 5.8: Focal length correction.

and o; and o0;,; be the origins of images I; and I;.;, located at the centre of each
image. We assume that each image has width w and the same true focal length f,
l.e. distances Oo; = Oo;y; = f and 0;a = 0;,1b = w/2, where a is the mid-point
of image I;’s right edge, b is the mid-point of image I;,;’s left edge, and w is the
width of each image. Let the overlap length be [;, i.e. 0’a = ba' = [;, where V' is
the projection of b in image I;, and a’ is the projection of a in image I;1;. From

Figure 5.8, we have
f ?
W

tanﬁ = 'Q—f,

¢i:a+187

tan ¢ =

giving

w w
l; = 5 = f - tan(¢; — arctan(g}- ). (5.8)

This overlap length is determined by the registration process, and should not

be altered when the panning angles are updated.

Let 6, be the angular error in closing the panorama given by:

g =21 =Y ¢ (5.9)

1=0
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where a positive angle denotes a gap in the final panorama and a negative angle,

an overlap.

We now update the estimate of focal length using
2m — 0,

et (5.10)
and then from Equation 5.8, update each panning angle to be

w
7 ) + arctan(—27).

We then go back to Equation (5.9) and repeat this process until |f,| reaches a

¢, = arctan(

small enough value.

This process gives an increment for each panning angle A¢; which is the differ-
ence between the final and original panning angle for each pair of adjacent images.
Using these and the new focal length f’, together with the previously determined
rotation matrices R; using registration techniques in Chapters 3 and 4, we can

compute revised values for each alignment matrix M; using
/ ff0 0 \ ( cos A¢g; 0 sin Ag; \ ( 1/f 0 0 \
M{=10 f 0 |- 0 1 0 - R; - 0 1/f O

\ 0 0 1) \ —sinA¢g; 0 cosAg; ) \ 0 0 1 }

On performing the stitching procedure with these new matrices, the cylindrical

panorama will be closed.

Note that the simpler approach of just using Equation (5.10) to force closure
of the cylinder surface as used in [Kang99, SzelS97] is not accurate when the pair-
wise registration is obtained from the 3-parameter rotation model, since incorrect
estimates of focal length induces errors in panning angles which are not corrected
by the Equation. When the 5- or 8- parameter model is adopted in pairwise reg-

istration, using Equation (5.10) is an adequate approximation.
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5.3.4 Deskewing

Figure 5.9: Minor error in unwrapped panorama.

Even after all these corrections have been made to close the panorama, there
may still be some small mismatches at the end due to other reasons such as im-
precise model assumptions, e.g. the camera position moves, or accumulated errors
in matrix calculations In particular, the unrolled panorama may form a quadri-
lateral rather than a rectangle: see Figure 5.9. We correct such a problem using
a deskewing method. Note that any quadrilateral can be warped into a rectan-
gle by a projective transformation. Therefore we can warp the four corners of
the unrolled panorama to impose closure. Finding the necessary transformation

is a straightforward calculation given the initial and desired final corners of the

panorama.

Although this treatment lacks a sound theoretical basis, the distortion it induces
over the whole image is much less apparent to the viewer than a small gap or overlap
at the ends of the panorama would be. By doing so, the remaining end mismatches

are distributed over the whole panorama thus reducing their visible effects.

5.3.5 Blending

In practice, the final panorama may have discontinuities in intensity (shadow or
ghost effects) if we simply use an unweighted averaging to combine adjacent images

in their overlap region. This is caused by various reasons such as incompatible
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v

transition

Figure 5.10: Blending of overlap.

model assumptions in pairwise registration or uneven exposure of the adjacent
photographs or changing lighting conditions. Human eyes are very sensitive to

these artifacts.

To reduce such discontinuity effects in the final panorama, we apply a simple
blending algorithm. Pixel values in each region where two photographs overlap
are computed by linearly interpolating the intensity values of corresponding pixels

from contributing images weighted according to their distance from the borders of

the overlap region. Thus, we use

IC(QE, y) = t(.T, y) ) Il(fl(x)’gl(y)) + (1 T t(xa y)) ) IQ(fQ(x)ng(y))

where (z,y) is a pixel in the overlap region; fi, 91, f2, and g, are the warping
functions of the two images I; and I, onto the cylindrical image I., respectively,
see Equation5.6; t(x,y) is the interpolation coefficient ranging between 0 and 1.

For simplicity we assume here the transition length is 1. See Figure 5.10.

Using the transformation matrices obtained from pairwise registration in the
last two chapters, corrected as in the previous sections of this chapter, we can
compute the size of an empty cylindrical panorama. To begin with, we wrap
the first image onto this empty panorama without any blending since there is

no content in it. Then we wrap and blend subsequent images onto it one by
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one. In our application we have assumed a small overlap between adjacent images,
which will result in only two images meeting in any overlap region. In practice, our
method can handle more than two overlapping images, it has a drawback of uneven
contributions from each image. In summary, we find that this simple blending
method works well in practice and produces good visual effects. More complicated
blending approaches can be found in [Xiong98, Burt83], where a labeling weighted

scheme or a multi-resolution spline blending algorithm is used.

5 4 Spherical Panoramas

'To represent an enclosed environment, a spherical panorama can be used. With an
ordinary camera, several sequences of images need to be taken to cover the whole
space. Normally, at least three sequences must be taken: upper, middle and lower
sequences. The middle strip is panning horizontally, while the upper and lower
strips are panning with a tilting angle up or down. The top and bottom are covered
by the overlaps in the upper and lower strips. These sequences must be registered
and stitched in both horizontal and vertical directions to make a panorama. A
multi-image registration problem is involved in the spherical case which is beyond
the scope of this research. With a known transformation between the images, we
study the stitching problem. In the rest of this section, the appropriate spherical

panorama warping operations are described.

Suppose three sequences of images have been taken in order to construct a
spherical panorama. Assume the transformations between the adjacent images in
the middle strip are known, and the transformations between images in the upper
(or lower) and the adjacent images in the middle strip are given. For the middle
sequence of images, the stitching is performed horizontally in a cyclical sequence;

for the upper and lower sequences of images, stitching is performed vertically with
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their adjacent images in the middle sequence. The problems to be solved are
basically the same as before: to find the warping matrices between the images and
planes tangent to the spherical surface given the results of pairwise registration,

and to project each source image onto the spherical model via its tangent plane.

5.4.1 Warping to Tangent Planes

To perform spherical wrapping, the images must first be warped onto planes tan-
gential to the viewing sphere. The formulation of the warping is the same as for
cylindrical warping except for the matrix Py, which relates two adjacent tangent
planes. Note that in the spherical case, not only a panning angle but also a tilting

angle is involved.

To find the panning and tilting angles, we project the origin of the second image
I, into the plane of the first image. In a similar way to cylindrical warping, the

panning and tilting angles are given by

¢y; = arctan(Tu,/ f),

¢g; = arctan(Yu,/ f),

where (Zy,, Yu,) i given by Equation 5.4.

The panning matrix relative to the previous image thus 1s
Py, =V;-Rp, -V},

where
/ cos@,, 0 sing,, \ ( cos ¢y, 0 —singg, \
Rp, = o 1 0 |-] o 1 0

\ —singy, 0 cosgy, / |\ sings; 0 cosdy, }
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Figure 5.11: Spherical warping.

5.4.2 Warping Images onto Sphere

Now we unwrap the spherical surface to a 2D panorama image plane, denoted as
I, for compact storage of the panorama. The unwrapping is done as follows: using
horizontal planes to cut the sphere from top to bottom, the spherical surface is
thus sampled by a set of parallel circles; we then flatten this set of circles onto
a 2D image plane, in which the top and bottom middle pixels correspond to the
top and bottom points of the surface. For simplicity, we assume that all images
are tangent to the spherical model. Let the center of the first image be the origin
of coordinates of the image plane I, and the unwrapped equator of the spherical
surface be its x-axis. We demonstrate how to map a point of an image onto this

unwrapped 2D plane representing the spherical surface.

Let p(z,y) be a point of image I, and f be the radius of the sphere. The point’s
original 3D coordinates can be written as (z,y, f): see Figure 5.11. After panning

and tilting rotations, R, = Py, Py, ... Py, the point is transformed to

(@,y,7)" = Ri(z,y, ). (5.11)
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Since only the center of each image lies on the spherical surface, we need to project

the point (z',y’, 2’) onto the spherical surface using

r

T=2f/\/(z'z +y'y + 27
Tl : ¢ g — y'f/\/(.’lf'ﬂi' +y1y/ + z/z/) (5.12)
| Z2=2f/\/(7T +yy + 22,

where (Z, 9, Z) is the point’s projection on the spherical surface. Representing the

point in spherical coordinates (6, ¢) yields

( e
T : d 0 = arcsin(g/ f) (5.13)

| ¢ = arctan(z/f).

Let the corresponding point in the unwrapped panorama image be (z,,ys).

From Figure 5.11, we have

T s = fcosb(p—7/2)+ fm/2 (5.14)

Yy, = fsin 6.

Combining the above Equations (5.11), (5.12), (5.13) and (5.14), we obtain
the transformation that maps a point in the image onto the unwrapped spherical

panorama

T :(z,y) = LT Ri(z,y, )" (5.15)

5.5 Summary

We have presented in this chapter the warping operations for constructing cylin-
drical and spherical panoramas. We have analyzed the effect of focal length error
on the end mismatch of the final panorama, and proposed a new scheme for fine-

tuning the focal length estimate to help eliminate the end mismatch. Errors arising
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from tilting and rolling of the initial image are considered and allowed for to further
tidy the final panorama. Finally a deskewing method is further used to eliminate
minor remaining defects. Experiments show that our method can produce visually

satisfactory results, as will be shown in the next chapter.



Chapter 6

Implementation and Examples

This chapter provides examples of panorama constructed by the methods presented
in this thesis. Four sequences of images both from film and digital cameras are
illustrated. A spherical panorama constructed from computer-generated images is

also demonstrated.

6.1 Implementation

To test and verify the methods presented in this thesis, a prototype system for
panorama building and viewing was implemented on a PC platform. The system
is a multi-document and multi-view Windows application. One window allows the
user to perform all the tasks of automatic pairwise registration including tools
for image processing and interactive registration; a second window provides an
interface for setting up the image sequence and generating the panorama image.
The final window shows the 2D panorama image as well as allowing 3D viewing.

An overview of the system in operation is shown in Figure 6.1.

137
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Figure 6.1: System Interface.
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6.2 Cylindrical Panoramas

We now describe the test data used in this thesis for cylindrical panoramas. Fig-
ure 6.2 shows a sequence of 8 images scanned in from film photographs. Figures 6.3
and 6.4 show the tie-points detected in each pair of images—they are marked with
"+’ symbols. All these 8 pairs of images are successfully registered by our method.
The parameters for image registration are set to be the same with that of experi-
ments in Chapter 3. For pair lo; and log, there is an object (a person) missing in
the right image in the region which overlaps the left image. This offers a challenge

to feature matching which is successfully handled.

It can be seen that sixteen pairs of matched tie-point are detected in image
pair [o; and log, which gives a sufficiently fine result. Figure 6.5 demonstrates
the resulting initial and final panoramas constructed: (a) is the panorama image
constructed without any final tidying corrections and (b) is the one built after final
tidying corrections. Figure 6.6 shows the end gap when the panorama image after
final tidying is wrapped onto a cylinder with focal length f = 330.4. After focal
length refinement, the result is shown in Figure 6.7, and the focal length has been
adjusted to f = 323.16, with the gap closed. To show the image quality before

and after gap closing, intensities have not been blended between the last and first

images in this case.

Figure 1.1 in Chapter 1 is another sequence of images scanned in from film
photographs. A same set of parameters is used for registration between each
adjacent image pair. Satisfactory results are obtained for all image pairs except
pair (3,4), which contains a building having many similar feature points in the
overlapping region, resulting in poor alignment. To deal with such a rare case, we

may use interactive registration, which is also provided by the system. Figure 6.8
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(a) shows the result of panorama construction without final tidying correction.
The shape of the panorama makes it obvious that the first image must be tilted

through a considerable angle. The final panorama image after correction is shown

in Figure 6.8(b).

Gap closing is demonstrated in Figure 6.9: an overlap of last and first images
results from mapping the panorama in Figure 1.2 onto a cylindrical surface. In
Figure 6.9(a), f = 330.40. Figure 6.9(b) demonstrates gap closing after focal
length refinement to f = 334.36 and Figure 6.9(c) shows the final result after all

corrections including deskewing. Figure 6.10 shows the resulting cylindrical model.

Figures 6.11 and 6.12 show a sequence of images taken using a digital camera.
There are 14 images in the sequence. In this example intensity differences are not
apparent between adjacent images since they were all taken inside a room with
constant illumination. All image pairs were able to be fine registered using our
automatic two-stage registration approach. The final panorama and gap closing

results are shown in Figure 6.13.

A sequence of 14 outdoor images taken using a digital camera is shown in
Figures 6.14 and 6.15. Having a lot of texture in these images, many possible
tie points are being found. It is obvious that excessive exposure differences are
present between images of pairs (2,3) and (4,5). Although the fine registration
program was invoked for these two pairs of images, the results from the first stage
feature-based method were retained due to non-convergence of the gradient-based
fine registration resulting from these significant intensity differences. The final
panorama after final tidying correction is shown in Figure 6.16 (a). The results

after end gap closing are illustrated in Figures 6.16(b) and (c).
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6.3 Discussion

We now discuss the overall performance of our method. If we carefully observe
Figures 6.3 and 6.4, we can see that the edge intensities are different in the same
image when it appears in different pairs. This is because we have normalized the
intensity in which the normalization coefficient is the same for each image in an
image pair but varies between the pairs. When converting a grayscale edge image
into a binary image, a maximum edge intensity value is first found in the minimal
overlap region of the left image and is used as the normalization coefficient for
both images. A pixel’s value is set to 1 when its intensity value exceeds a certain
percentage of this coefficient; otherwise it is set to 0. This normalization process
helps to improve the robustness of feature detection by retaining the common
features of interest in an image pair. If we normalize each image separately using
its own maximum value over the whole of image, the features retained in the
overlap region could be quite different for each image, since the image intensity
may differ a lot in the non-overlap region as a whole between the images. This
may cause many features in one image to have no counterparts in the other image,

thus making matching more difficult.

When the actual overlap is much larger than the minimal overlap assumed, it is
more likely to produce a coarse alignment only using the feature-based registration
algorithm, because the features used do not cover the whole overlap region. If the
user has some rough idea about the amount of overlap beforehand, this value can
be used for the whole sequence. The default value of minimal overlap is set to 16%.
Presumably we know the width of each image and the focal length, we can estimate
the minimal overlap in this way: first we compute a width sum of all images in
the sequence and the circumference with the focal length to be the radius; then

we take the difference of these two values and divide it by the number of images.
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Another simple way to set this value is to only use the number of images in the
sequence. For instance, if there are less than 8 images in the sequence indicating
a relatively small overlap, we can just use the default overlap fraction of 16%. If
there are more than 8 but less than 14 images, a starting overlap value of 25%
1S more appropriate so that we include more features to obtain a finer resolution
of feature-based registration. We may even use overlap values of 50% if more
images are included in a sequence. Using a correspondence set covering the whole
overlap region helps to achieve better registration result. However, using a larger
minimal overlap extracts more features, resulting in more feature matches, and

thus increases computational cost.

Setting of parameters for feature-based registration has already been discussed
in Section 3.6 of Chapter 3. Further experiments show that our registration pro-
cedure is robust, and relatively insensitive to the choice of operational parameters.
In practice, we set most of the parameters to default values. Only four parameters
are left in the system interface for the user to adjust. One is T, the threshold pa-
rameter for converting the gray scale edge image to binary black and white image.
The user can adjust this value easily by observing the whether there are adequate
significant edges remained. The other three parameters are related to the size
of main structures in an image, which are derivative deviation o, the length for
determining curvature [ and the size of the template window for matching corre-
spondences s. The same parameter values were used for all the experiments shown
in this thesis, i.e. T, =0.2, 0 = 2.5, [ = 10 and s = 30. When the gradient-based
fine registration method is invoked, it makes use of the gradient images obtained
from Canny edge detection in the first stage of feature-based registration. In this

way the computational expense is held down.

Figures 6.2 and 1.1 are scanned in photographs from a film camera, while
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Figures 6.11, 6.12, 6.14 and 6.15, are images from a digital camera. Generally the
images from a digital camera have more consistent brightness between adjacent
images compared with those scanned from film photographs, so we can obtain

finer resolution at an earlier stage of whole registration process.

We are also considering some more objective ways to evaluate the quality of
constructed panorama. Such as comparing our results with source images captured

using a calibrated camera with turning table, or using a panorama camera, etc.

Tests show that our method is fast. The timing of pairwise registration in a
Pentium III 500 MHz PC is about 2~5 seconds for a typical image pair shown in
this thesis, with the image size ranging between 320~390 for width and 240~260 for
height in pixel. The feature-based registration needs about 2~3 seconds, in which
Canny edge detection takes about 1.5 seconds. Once invoked, the fine registration
is efficient since the gradient image is already available from the previous feature
extraction operation. Hence, one or two more seconds are needed for 3- or 5-
parameter fine registration models, respectively. Since the 4-parameter feature-
based model includes all the camera constraints in our case, a small number of tie
points are sufficient for a reasonably good overall alignment. Canny edge detection
is the step which overall takes most time. Typically, about 2 minutes is used for
constructing a panorama consisting of a dozen images shown in this thesis, among

which about 45 seconds is used by computer processing, the rest is by manual

arrangement.

6.4 Spherical Panoramas

An example of constructing a spherical panorama from computer generated images

is shown in Figure 6.17. There are three sets of image sequences which cover a
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closed space, with 7 images in each set. The small green square marks the center of
an 1mage while the red lines show the neighboring relations of each image. Using

the methods in Section 5.4, a spherical panorama was constructed. The result is

shown in Figure 6.18.
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Figure 6.3: Tie-points detected on image pairs.
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Figure 6.5: Initial (a) and final (b) cylindrical panoramas.
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Figure 6.6: End gap (f = 330.4)

Figure 6.7: Gap closed(f = 323.16).
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Figure 6.8: Initial (a) and final (b) cylindrical panoramas.
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Figure 6.9: Gap closing (a) mismatch at the end; (b) focal length refinement; (c) further

adjustment.

Figure 6.10: Mismatch closed in cylinder model.
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Figure 6.11: A sequence of images: scysly ~ scyslp.



6.4. SPHERICAL PANORAMAS 153

-
= A
=
o
wn
o
—
—
ol
=
~
@
a e
= i
¥ al —
= BA
~ =
n (.
)
aC
—
n
=
~
> )

Figure 6.12: A sequence of images: scyslg ~ scyslis.
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(b)

Figure 6.13: (a) cylindrical panoramas, (b) end gap and (c¢) gap closed.
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gdms gdmg gdms

Figure 6.14: A sequence of images: gdmg ~ gdms.

gdmg gdmyg gdmyg gdmy;

gdmi

Figure 6.15: A sequence of images: gdmg ~ gdm;s.
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(b)

Figure 6.16: (a) cylindrical panoramas, (b) end gap f = 358 , and (c) gap closed f' = 353.35.
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Figure 6.17: Three sets of image sequences.
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Figure 6.18: Spherical panorama.



Chapter 7

Conclusions and Future Work

A panoramic image is a compact representation of a large field of view which can
be used to provide users with an immersive view of an environment. It is a key tool
for providing a virtual reality experience of a complex scene. It also has other wide
visualization applications across the Internet on the World Wide Web. Among the
various forms of panorama, the cylindrical model is the most commonly adopted,
in which a collection of images is used to render the scene while supporting circular
camera motion. The source images for a panorama can be obtained using special
panoramic cameras or with the aid of special equipment like a turntable, or just
using a hand-held ordinary camera. The latter approach eases the restrictions of
image acquisition for a non-specialised user in that it tolerates moderate camera
tilting and rolling. However, it requires more effective methods for constructing a
high quality panoramic image than traditional mosaicing techniques. This thesis
has presented tools for this purpose that include a robust pair-wise image registra-
tion method using a combination of feature-based and gradient-based techniques,
and also techniques for panorama tidying to correct various minor errors in order

to generate a visually satisfactory final result.

159
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7.1 Synopsis

In this thesis, I have presented a method for building a full panorama of a 3D
scene from uncalibrated photographs taken with an ordinary hand-held camera
located at an approximately fixed location. The method is automatic and imposes

no stringent requirements on the photographer.

The method is a two-step image registration process using a feature-based
method for initial registration, and a gradient-based method for further fine regis-
tration if needed. The key to the first step is a robust procedure for finding reliable
feature correspondences between pairs of adjacent images. To do this, an improved
algorithm for high curvature point detection is used for feature extraction, and a

gradient and a shape based metric are used for feature matching.

I have also shown how to model the perspective transformation between two
adjacent images, and have given an iterative technique using a sequence of lin-

ear steps for computing this perspective transformation by minimizing an error
function.

To improve the result of feature-based image registration, a gradient based fine
registration is invoked when there are too few features detected, or some when
certain mismatched features are not excluded leading to poor initial registration.
The latter problem poses a serious problem to the least square optimization pro-
cess used in the feature registration approach and is a major cause of large residual
errors. A new b-parameter model has been proposed for fine registration which
can generate better results than the existing 3-parameter model and is computa-
tional more efficient than the existing 8-parameter model. An analysis of suitable

choice of smoothing factor in fine registration is presented to enlarge the effective

registration scope.
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I have described how deficiencies in the final panorama, caused by treating
panorama building as a series of local registration problems rather than a global
problem, can be overcome by a sequence of correction techniques. In particular,
I discussed cylindrical warping methods that allow minor tilting and rolling of
the images, and explained how to correct deficiencies in the panorama caused by

assuming zero tilting and rolling of the first image of the sequence.

Finally, the effects of errors in focal length estimation on panorama closing
were investigated theoretically, and it was found that the length of the composite
panorama is more sensitive to focal length error than to errors in local registration.
Based on this observation, a new approach for gap closing by iteratively adjusting

the focal length and panning angles accordingly was proposed.

A prototype system has been developed to verify the theoretical approaches
presented in the thesis. I have tested the methods with photographs of a number of
different 3D scenes, and the overall system has yielded visually satisfactory results.
The most time-consuming step is pair-wise image registration. However, since a
relatively small number of features are used for performing an initial registration,
and also because the image processing results from the first step are re-used by the

second fine registration step, the overall speed of our method is reasonably fast.

Automatic image stitching tools are provided by various pieces of commercial
software such as LivePicture (MGI)’s Photovista, Apple’s QuickTime VR, and
IBM’s PanoramIX. We have tried using them on various images scanned from film
photographs and digital camera pictures, and I have found that their automatic
registration capabilities are not very reliable when there is a small overlap or large
brightness differences present between adjacent images. Two examples are given
below. Figure 7.1 is the output of the Photovista automatic stitching function for

the image sequence shown in Figure 6.2, while the panorama image produced by
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our method is shown in Figure 6.5(b). We can see in Figure 7.1 that only two pairs
of images are aligned by Photovista, while our method did successfully register all
pairs. Figure 7.2 shows another example of the use of Photovista, using the digital
camera images given in Figures 6.14 and 6.15; our result is shown in Figure 6.16

(a). For this set of digital photographs, there are four image pairs that Photovista

obviously misregistered.

Figure 7.2: Result from Photovista for digital camera image sequence gdmg ~ gdm;,

7.2 Future Work and Discussions

In this last section I will discuss some limitations of the work presented in this

thesis and future research directions.
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7.2.1 More Flexible Model

In this work, I have assumed that all the images in a sequence have the same
fixed focal length; the image alignment solution depends on this. A more flexible
model should allow variations of focal length, that is zooming of the camera. So
an interesting problem is to consider the presence of changing focal length as well

as of large perspective distortions.

Another assumption used for panorama construction in this thesis is that all
images are taken from a nearly fixed viewing position. This means we may use a
perspective transformation to approximately model the relation between adjacent
images used to construct the panoramic image. A perspective transformation is
only correct when the images are taken from a common viewpoint while rotating a
camera (or when the scene is planar with arbitrary camera motion). If these condi-
tions are not satisfied, then the resulting panorama will not be physically correct.
Although alignment of images can be modeled by a polynomial transformation
when it cannot be modeled by a perspective transformation, this method does not
give information on how to decide the transformation between the images outside
the overlap region. It might be possible, however, to combine a global registration

that uses all features in the whole sequence of images together with some local

adjustment methods.

7.2.2 Correction of Camera Lens Distortions

To make it easy for users to acquire input images, intricate calibration procedures
should be avoided or restricted to a minimum. Camera intrinsic parameters such
as focal length and radial distortion coefficients may be found by such procedures.

In this work, the focal length is estimated using the rotation model and perspective
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transformations, and refined using the composite panorama length. To simplify
the problem, I have assumed the radial distortion of camera is negligible. However,
given a camera with a low quality lens, lines near the image border can be distorted,
and brightness variations can occur there too. For example, for the images in
Figure 6.2, the intensity is lower in the four corners than in the central area, and
lines are bent near the edges of the image. These are typical phenomena produced
by radial distortion with low-scale lenses. There are many approaches to finding
radial distortion coefficients [Kang99, Sawhney99], but efficient methods are still
worthy of exploration. To correct intensity distortions, a proper blending scheme
is needed which can smooth the intensity across the whole panoramic image and
remove unwanted variations. This is another interesting area to study, either to
produce an automatic method, or to devise some interactive tools which can correct

gray levels in any area of interest in an image and at the same time blend the border

smoothly with its surroundings.

7.2.3 Global Solutions for Eliminating End Seams

The end-seam elimination methods described in this thesis adjust the pair-wise
registration locally. A better approach in principle is a global registration solution
that makes use of features extracted from all images of the circular sequence simul-
taneously. By using a global reference frame to represent the features’ coordinates
in 3D camera reference frames while at the same time imposing the closure con-

straints in 3D form, it is possible to formulate and simplify the problem to provide

a solution at reasonable cost.
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7.2.4 Multiple Image Registration for Spherical Panorama

Construction

Using a cylindrical panoramic image has the drawback that it is unable to include
parts of the scene above and below a given strip. This deficiency can be overcome
by using a spherical panorama. To build a spherical panorama from images taken
using an ordinary camera, several sequences of images each with a different fixed
tilting angles can be taken to cover a closed space. Since with this approach there
will be at least four adjacent images meeting in each overlap region, multiple im-
age registration must be performed. Since manually registrating multiple images
1s almost impossible to provide a satisfactory result, automatic registration is an
indispensable step in constructing a spherical panorama. So efficient multiple im-

age registration algorithms are another avenue worthy of exploration, considering

its wide potential applications.

7.2.5 Optimum Number of Images

Another practical issue that needs further investigation is how best to choose the
number of images taken. Fewer images make the panorama building process more
economical, but will reduce the resolution of the panorama. Including more images
will increase the cost of construction in both speed and storage. The number of
images can also affect algorithmic robustness; For instance, if there are too few
images in a sequence, the overlap regions of adjacent images will be too small to
have enough features included, thus causing failure of the registration algorithm,

or at least, poor registration. To decide the optimum number of images, more

experimental work should be carried out.
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7.2.6 The Future

Now that full view panoramas at a single viewpoint can be successfully constructed
from images from a hand-held camera, a source of data for studying further issues in
image-based virtual reality systems is available, leading to an area with tremendous
potential for exploration. By easing the restrictions on source images used for
building panorama images, this work will make more users interested in panoramic

photography, stimulate the demand for constructing visual scenes and promote

further research in the area.
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